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Lower back pain (LBP) is one of the most prevalent global health issues and a main cause

of disability. Lumbar disc degeneration (LDD) is one of the major reasons for LBP, which

could be evaluated by radiographic observations through magnetic resonance imaging (MRI).

Nevertheless, these MRI observations, as diagnostics for LBP/LDD, are prone to human error

and may be insufficient in detecting real-time variations of complex biological systems. This

thesis aims to identify novel LDD biomarkers related to altered metabolism, which could aid

personalized diagnosis and treatment of LBP.

This study is based on a population cohort of 3,584 southern Chinese. Over 1,000 individuals

were followed with MRI scans, which were read by experienced physicians specialized in

LDD. Statistical analyses showed that the severity of LDD is significantly greater in the

lower lumbar region, the lower disc levels forming a cluster more related to age. Accordingly,

a systematic way to quantify the degree of LDD from raw MRI reads is proposed in this

thesis. Apart from phenotyping, 2,482 samples in the cohort were genotyped, and the

serum samples of 757 individuals were acquired for proton nuclear magnetic resonance

spectroscopy, resulting in 130 metabolomic measurements over three molecular windows.

In order to discover genetic variants associated with different metabolomic measurements,

genome-wide association studies (GWAS) were conducted on 571 individuals for each of the

130 metabolomic measurements. In total, 123 unique single nucleotide polymorphisms were

found to be significantly associated with one or more metabolomic measurements; among

them, intergenic variants were underrepresented, whereas exonic, intronic and UTR3 variants

were enriched. My results suggest significant associations between 42 different metabolomic

traits and a number of genetic loci. Polyunsaturated fatty acids were found to be significantly



ii

associated with the FADS1/FADS2 loci, and CTTNBP2 was identified as a potential risk

locus for a cluster of lipid / fatty acid related metabolites.

The human metabolome was next estimated based on the summary statistics from previous

GWAS and genomic data via meta-analysis and polygenic scoring. The associations between

(estimated) metabolomic data and various phenotypes (anthropometric, behavioral, clinical,

and LDD-related) were tested using different regression methods, ranging from simple linear

models to Lasso. Potential metabolomic biomarkers for LDD were identified, including blood

lipid levels, the mean diameter for very low density lipoprotein particles, sphingomyelins

and tyrosine.

Through GWAS, polygenic scoring and association analysis, this study pinpoints metabolomic

biomarkers for LDD with a purely data-driven approach. It also proposes a new way to

analyze genomic, metabolomic and phenotypic data in an integrative manner, utilizing

metabolome prediction models. This process of the integration of big omics data could help

us discover known and novel metabolomic biomarkers associated with complex traits and

gain a better understanding of the mechanisms of these associations.

(452 words)
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Introduction

1.1 Statistical analysis of big omics data

1.1.1 Genomic data

It is, indeed, a “small”1 world, if we take into consideration how many people are living

on Earth. At the time of writing, we share our planet with over 7.6 billion human beings

[Worldometers, 2008] – every one of us being so similar, yet so different. Like all the other

living creatures, we grow, adapt, respond to whatever today has in store for us and reproduce.

But at the same time, just as no two leaves are exactly alike, all human beings are different

from one another. How do the trillions of cells in our body know how to function properly?

What makes each of us unique? The partial2 answer lies in our genome.

Let us start by examining the building blocks of the human genome. Deoxyribonucleic acid

(DNA) is a chain of nucleotides containing genetic instructions for the activities of almost

all living organisms; it consists of two paired strands, coiled around one another to form a

double helix. Each nucleotide (one of the “rungs” of the double helix) is composed of one of

four nitrogen-containing nucleobases – adenine (A), thymine (T), cytosine (C) and guanine

(G); we call a unit of two nucleobases bound to each other (A-T or G-C) a base pair (bp). As

1Approximately 63,819 billion square meters of land is habitable on Earth [Pianka, 2007], giving us less
than 8,400 square meters per person. This is actually extremely sparse since we need public space as well.

2The other part of the answer is blowin’ in the wind (pardon me for being cheesy). Environmental factors
are also important.
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illustrated in Figure 1.1, DNA is stored in thread-like structures called chromosomes in the

nucleus of each cell.

Fig. 1.1 Cell, chromosome and DNA [Science Learn Hub, 2011].

Based on DNA strands, ribonucleic acid (RNA) strands are created via transcription, which

are next translated to specify the sequence of amino acids within proteins (c.f. Figure 1.2).

This process is summarized in the central dogma, which was first proposed by [Crick, 1970].

A gene is a sequence of DNA that encodes function. The human genome project (HGP)

has estimated that human beings have between 20,000 and 25,000 genes, whose length

ranges from several hundred to over 2 million bases [Venter, M. D. Adams, et al., 2001].

Genes could include both coding regions (exons) and non-coding segments (introns) between

exons. Certain non-coding sequences also have biological functions, for instance, regulate

neighboring coding regions [Carey, 2015].

The human genome is simply a human’s complete set of DNA – it has approximately

three billion base pairs of DNA arranged into 46 chromosomes [National Human Genome

Research Institute, 2007]. The term “genomics” was originally coined by Dr. Roderick3.

Unlike genetics, which studies inheritance mainly in terms of single genes, genomics aims at

characterizing and quantifying genes collectively [Klug, Cummings, et al., 2003].

3In 1986, over plenty of beer. The name was intended for a new scientific journal [Kuska, 1998].
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Fig. 1.2 The central dogma [Genome Research Limited, 2016].
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1.1.1.1 Genetic variation

DNA sequences are prone to variation. Essentially, this simple fact is why you, my reader,

are different from me, and also why we now stand as human beings instead of little globs. In

a population, there could be different DNA sequences at the same locus (a specific position

on a chromosome). This is known as genetic polymorphism, and the alternative sequences at

a locus are called alleles. Genetic variation could be categorized into three classes.

Single nucleotide polymorphisms (SNPs) and single-nucleotide variants (SNVs) refer to

variation in a single nucleotide at a locus. This substitution could be a transition (interchange

of purine or pyrimidine nucleic acids4) or a transversion (interchange of a purine and

pyrimidine nucleic acid4). If the variation is common within a population (> 1%), it is

called a SNP; otherwise, it is a SNV. SNPs could fall in coding/non-coding regions of

genes or intergenic regions. Those in coding regions may or may not influence the protein

sequence – synonymous SNPs do not affect the sequence of amino acids in proteins, whereas

nonsynonymous SNPs do change it. SNPs not in coding regions could still affect transcription

factor binding, messenger RNA (mRNA) degradation, gene splicing, or the sequence of

non-coding RNA. They may also alter gene expression, denoted as expression quantitative

trait loci (eQTLs). [Kruglyak and Nickerson, 2001] estimated that there are approximately 10

million common SNPs, which could account for 90% of the variation in the world’s human

population. Hence, the study of SNPs is crucial in understanding the underlying genetics of a

wide range of human diseases. The HapMap project aims to describe the common patterns of

these variations, also taking into consideration linkage disequilibrium (LD; the non-random

association of alleles at two or more loci) [International HapMap Consortium, 2003].

The second type of genetic variation are indels5, which refer to insertion or deletion of short

DNA sequences. They could range from 1 to 10,000 bps in length [Mills et al., 2006]. 16%

to 25% of all sequence polymorphisms in humans exist in the form of indels – this frequency

is markedly lower than that of SNPs [Mills et al., 2006]. Still, many diseases are associated

with indels, examples including cystic fibrosis [F. S. Collins et al., 1987] and fragile X

syndrome [Warren et al., 1987].

4Adenine (A) and guanine (G) are purine nucleic acids, whereas cytosine (C) and thymine (T) are pyrimidine
nucleic acids.

5The functional consequences described for SNPs/SNVs also apply to indels and to a certain extend, to
structural variations.
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Finally, genetic variations occurring over a larger DNA sequence are called structural vari-

ations6. These include copy number variations (CNVs) and chromosomal rearrangement

events (deletion, insertion, inversion, duplication, etc.). Structural variations in the human

genome can affect gene dosage (the number of copies of a certain gene present in a genome)

and therefore, diseases and other phenotypic variations [Feuk et al., 2006].

1.1.1.2 Genome-wide association studies

How do genetic variations affect human phenotypes? Genetic association studies seek to

answer this question by testing if the allele of a genetic variant is found more frequently than

expected in individuals with the phenotype of interest [Risch and Merikangas, 1996].

With the emergence of big biobanks (human genetic repositories) and the development

of methods for genotyping (e.g. DNA microarrays), genome-wide association studies

(GWAS) were introduced. GWAS could scan the entire genome for SNPs and other variants

significantly associated with traits of interest. This approach is completely data-driven and

could detect associations, but not causality [Pearson and T. A. Manolio, 2008].

The common disease / common variant (CDCV) hypothesis7 states that common disorders

are likely affected by genetic variation that is also common in the population [Reich and

Lander, 2001]. This hypothesis is quite intuitive. Assuming that common genetic variants

could influence diseases, the effect size of any particular variant must be small relative to that

identified for rare disorders [Bush and Moore, 2012]. If common alleles have small effects

yet still common disorders show heritability (proportion of variation of a trait in a population

due to genetic variation), then multiple common alleles must influence disease susceptibility

at the same time [Bush and Moore, 2012]. GWAS could typically identify these common

variants with small effect sizes (lower right corner of Figure 1.3), making them ideal for

detecting genetic effects on human traits.

The statistical power of a GWAS is determined by the effect size of the susceptibility loci and

the study’s sample size. The success of a GWAS also depends on a thoughtful study design,

6Please see footnote 5.
7A contender to the CDCV hypothesis is the common disease / rare variant (CDRV) hypothesis, which

argues that the genetic susceptibility to common diseases is mainly contributed by rare variants with relatively
high penetrance [N. J. Schork et al., 2009]. Several common diseases (e.g. breast cancer) do have rare,
Mendelian forms (upper left corner of Figure 1.3), but their many other forms follow the CDCV hypothesis
and hence still could be studied using GWAS [N. J. Schork et al., 2009]. Indeed, in practice, both CDCV and
CDRV hypotheses hold, each to a different extent. The question regarding the “correctness” of each hypothesis
is an empirical one [N. J. Schork et al., 2009; G. Gibson, 2012].
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Fig. 1.3 Spectrum of disease allele effects [Bush and Moore, 2012].

careful quality control and genotype imputation8, as well as proper control for population

stratification and other confounding factors.

Since we are performing a lot of regressions at the same time, the probability of false positives

is now quite large. This is called the multiple testing problem. To account for multiple testing,

as a rule of thumb, a p-value of 5×10−8 is the threshold for genome-wide significance [Barsh

et al., 2012]. This number is equivalent to a threshold of α = 0.05 Bonferroni-corrected9 for

1 million independent variants (approximately the number of independent SNPs estimated

using the HapMap Phase II data set [Consortium et al., 2007]) [Kanai et al., 2016].

1.1.1.3 Genetic risk prediction

Complex disorders such as schizophrenia, diabetes, and multiple sclerosis are fundamentally

determined by genetic and environmental factors [N. J. Schork, 1997]. Due to the seriousness

8To impute is to replace missing data with substituted values.
9The Bonferroni correction sets the significance cut-off at α

n , where α is the significance level and n is the
number of tests.
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and prevalence of these diseases, there has been plenty of research effort in developing

methods for predicting their risk. Genetic risk prediction (GRIP) could open the door for

personalized treatment for complex diseases, which is crucial in both medical research and

providing high-quality, affordable health care.

Polygenic risk scores

Numerous complex disease susceptibility loci have been successfully identified by GWAS in

recent years [McCarthy and Hirschhorn, 2008]. One of the first approaches to utilize these

GWAS results in GRIP is constructing polygenic risk scores (PRS) by calculating a weighted

sum of the known susceptibility loci [Speliotes, Willer, et al., 2010].

One issue with only using known susceptibility loci is that, even though the variants at these

loci affect the risk for the corresponding disorders, they could only explain a small faction

of the genetic risk variance in the general population [McCarthy and Hirschhorn, 2008].

Because of this drawback, the PRS approach fails to perform satisfactorily when applied to

certain diseases and conditions. For instance, it merely produced an area under the curve

(AUC) of 0.515 with the atherosclerosis risk in communities dataset [Speliotes, Willer, et al.,

2010], indicating that the prediction is only slightly better than chance10.

Therefore, rather than solely estimating the disease risk based on the known susceptibility

loci, we need to select a wider range of risk alleles reaching genome-wide significance for

constructing PRS [Z. Wei et al., 2009]. More generally speaking, designing a precise and

efficient GRIP method is two-fold. We need to first select which genetic variants to include

in the predictive model, and next develop a metric for GRIP integrating the selected markers

(e.g. PRS) [Wimmer et al., 2013; Schrodi et al., 2014].

Nowadays, instead of taking a weighted sum of only the known susceptibility loci, PRS sums

a number of trait-associated alleles across many genetic loci, typically weighted by effect

sizes estimated from a GWAS [Dudbridge, 2013].

PRS = ∑
i
(xi log(βi)) (1.1)

10When the prediction for a binary classification problem is made by tossing a fair coin, we expect an AUC
of 0.5.
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Equation 1.1 is a general formula of PRS. Here xi is the number of risk alleles (0, 1, 2) at

SNP i, whereas log(βi) are the log odds ratios from per-SNP logistic regressions.

There are various SNP pre-selection methods for constructing PRS. SNP thresholding selects

a subset of SNPs that are more associated with the trait of interest [Euesden et al., 2014].

Thresholding is usually followed by LD-based methods like pruning and clumping, which

try to choose a subset of SNPs that are not highly correlated [Euesden et al., 2014].

Besides being utilized for GRIP, PRS can be very powerful in detecting genetic effects when

no single SNPs are genome-wide significant, as well as establishing a common genetic basis

for related diseases [Dudbridge, 2013].

Regression methods

Regression methods are also intuitive ways to perform GRIP for complex diseases. A general

logistic regression model has been proposed by [Q. Yang et al., 2003] to estimate both the

risk and the standard error of the risk estimates. Furthermore, its predictive power could be

improved by utilizing best linear unbiased predictors (BLUPs) to account for random effects

[Campos et al., 2013]. At present, regression methods are quite widely adopted in the field

of GRIP for complex diseases ranging from cerebrovascular disease [Tsai et al., 2013] to

prostate cancer [Mondul et al., 2013].

Nevertheless, these seemingly well-established techniques still suffer from various issues.

Recall that there exists LD between different genetic loci. One potentially serious problem

is the high correlation between pairs of genetic markers that are close to one another. This

multicollinearity violates the basic assumptions of regression analysis, which could make the

regression results suspicious at best [Schrodi et al., 2014]. Moreover, by nature, regression

analysis is more focused on estimating the effect of various parameters (the genetic markers)

on the dependent variable (the disease status) than performing classification (whether the

individual suffers from the disease or not) itself. Some have argued that in light of this fact,

regression analysis is not very pertinent in a clinical setting [Z. Wei et al., 2009].

Machine learning approaches

To tackle the previously mentioned problems, machine learning (ML) approaches have been

introduced into the field of GRIP. Unlike the traditional approaches (e.g. PRS) obeying
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explicit, rule-based algorithms, ML methods are intelligent in that they could directly learn

from data and build a purely data-driven model for risk prediction [Dietterich, 1997].

As discussed previously, potential interactions between genetic variants may incur problems

in regression analysis. When we learn from genomic data, though, these interactions could

actually become advantageous instead. During the learning process, ML methods could

make inferences about the interactions between variant pairs and allocate weights to the

variants in the prediction model accordingly. In this way, the optimal binary classification

power could be achieved [Z. Wei et al., 2009]. For example, support vector machines

(SVMs) are supervised ML algorithms that attempt to recognize patterns in the data and

find a maximum-margin hyperplane that separates the data into different classes [Cortes

and Vapnik, 1995]. [Z. Wei et al., 2009] has suggested that by taking into consideration

interactions between a large group of genetic variants through SVMs, the GRIP performance

could be significantly improved. Some other ML methods commonly used in GRIP include

multifactor dimensionality reduction [R. L. Collins et al., 2013], naïve Bayes classifier

[Malovini et al., 2012], and random forest (RF) [Khalilia et al., 2011].

ML methods are generally more accurate and efficient than traditional methods in terms of

GRIP, but could be overly optimistic when over-fitting is present [Okser et al., 2014]. Apart

from this, ML methods are often highly dependent on the available sample size and also

require fine-tuning hyperparameters to achieve the optimal prediction performance, which

could be time-consuming. Therefore, traditional methods like PRS is still more widely used

for GRIP when the sample size is limited.

1.1.2 Transcriptomic data

All the RNA molecules in one cell or a population of cells form the transcriptome. First

initiated in the early 1990s, transcriptomics (the study of whole transcriptomes) could provide

us with insights into the mechanisms of gene expression, the functional roles of different

genes and the gene regulatory network (GRN) [Brazma and Vilo, 2000].

1.1.2.1 Gene expression

Gene expression is the process of “interpreting” the information stored in a gene. The field

of transcriptomics has hugely transformed with key techniques like microarrays and RNA
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sequencing (RNA-seq) [Lowe et al., 2017], which could measure gene expression levels

quickly and robustly.

Microarray data analysis

A DNA microarray (DNA chip) is a collection of microscopic DNA spots attached to a solid

surface, which can be used to simultaneously measure the expression levels of numerous

genes [Schena et al., 1995]. The raw data is first transformed into a gene expression matrix.

After data normalization, we could perform clustering and visualize the results through

heatmaps and dendrograms (c.f. Figure 1.4). Clustering proves to be useful in detecting gene

expression profiles for distinguishing between cases and controls [Brazma and Vilo, 2000].

Fig. 1.4 Visualization of the gene expression matrix [Liu et al., 2014]. Up-regulated genes
are colored red, and down-regulated genes are colored green. It could be seen that neurofi-
bromatosis type I cases and controls have different gene expression profiles.
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Additionally, significance analysis of microarrays (SAM) [Tusher et al., 2008] and empirical

Bayesian analysis of microarrays (EBAM) [Efron et al., 2001] are two well-established

statistical methods for detecting differentially expressed genes in microarray data. In both

procedures, a modified version of the t-statistic is used to pinpoint genes whose expression

levels significantly differ between two groups. [Schwender et al., 2003] has shown that of the

two, SAM is better with simulated data but performs worse when applied to real data sets.

RNA-seq data analysis

RNA-seq utilizes high-throughput sequencing to record all RNAs in a biological sample at

a given moment [Chu and Corey, 2012]. It is used more and more widely for measuring

the transcriptome since it is able to quantify a large range of expression levels with absolute

values [Kukurba and Montgomery, 2015].

A generic roadmap for RNA-seq data analysis has been proposed by [Conesa et al., 2016].

After quality control, we could perform transcriptome profiling on the RNA-seq data – steps

including read alignment, transcript discovery and quantification [Conesa et al., 2016]. The

key part of RNA-seq data analysis utilizes differential gene expression methods, which aim

to estimate the degree of differential expression between two or more conditions based on

read counts from replicated samples [Dündar et al., 2015; Conesa et al., 2016]. Finally, gene

set enrichment and pathway analyses could characterize the molecular functions or pathways

involving differentially expressed genes [Conesa et al., 2016].

1.1.2.2 Gene regulatory networks

Cells could be considered as containers of various chemicals interacting with each other to

control the gene expression levels of mRNAs and proteins. These molecular regulators and

their interactions comprise a gene regulatory network (GRN).

A typical GRN is shown in Figure 1.5a. Genes can be viewed as nodes in the network,

with inputs being proteins (e.g. transcription factors), and outputs being the levels of gene

expression (c.f. Figure 1.5b). A GRN is an abstraction of the cell’s molecular dynamics –

modeling GRNs could help us predict novel regulations and gain biological insights into the

cell’s functional organization [Barabasi and Oltvai, 2004].
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(a) Example of a GRN [Ma et al., 2014].
Large blue circles denote transcription factors,
whereas small green circles denote other genes.
Edges represent direct regulatory interactions (in-
hibiting: red; excitatory: black).

(b) Simplified control process of a GRN.
Changed cell behaviors and structures
could in return, influence genes, mRNAs
and proteins; therefore the feedback cir-
cuits.

Fig. 1.5 Illustration of GRNs.

There are numerous mathematical models for GRNs, including coupled ordinary differential

equations, Boolean networks [Kauffman, 1969], continuous networks [Vohradsky, 2001]

and stochastic gene networks [A. Arkin et al., 1998]. Based on these models, we can try to

predict gene expression levels in a GRN, which could aid exploration of how drugs affect a

group of genes [Barabasi and Oltvai, 2004].

1.1.2.3 Gene-based association

Recall that GWAS is capable of searching the entire genome for genetic variants significantly

associated with complex traits (c.f. Section 1.1.1.2). Nevertheless, it is hard to understand

the mechanisms underlying the significant associations from GWAS. Could we conduct a

modified version of GWAS, also incorporating transcriptomic data? This is what gene-based

association methods like PrediXcan [Gamazon et al., 2015] aim at.

The PrediXcan [Gamazon et al., 2015] / MetaXcan [Barbeira et al., 2016] methods are

illustrated in Figure 1.6. To recap, GWAS run a set of regressions Y = Xlb+ε , where Xl is the

individual dosage and Y is the phenotype of interest. The regression coefficients b describe

SNP-based associations. In contrast, PrediXcan first calculates imputed transcriptomes



1.1 Statistical analysis of big omics data 13

(Tg) with Xl based on a database of transcriptome prediction models (PredictDB, available

at http://predictdb.org/) and next regresses Y on the predicted expression levels Tg, i.e.

Y = Tgγ + ε [Gamazon et al., 2015]. The regression coefficients γ are our gene-based results.

MetaXcan could compute the gene-level association results directly using the summary

statistics from GWAS, which is useful when we do not have access to the raw genomic data

[Barbeira et al., 2016].

Fig. 1.6 Flow of analysis of GWAS, PrediXcan and MetaXcan [Barbeira et al., 2016].

Gene-based association methods benefit from reduced multiple-testing burden and more

interpretable results [Gamazon et al., 2015; Barbeira et al., 2016]. It has been shown that

PrediXcan can discover known and novel genes associated with complex traits and help us

understand the mechanism of these associations [Gamazon et al., 2015].

1.1.3 Metabolomic data

One of the defining features of a living creature is metabolism, the set of life-sustaining

chemical reactions within the organism’s cells. Metabolism converts food to energy and

building blocks for nucleic acids, lipids, proteins and some carbohydrates. It also eliminates

http://predictdb.org/
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nitrogenous wastes. The intermediates and products of metabolism are called metabolites.

Normally, we restrict the term metabolite to small biological molecules (< 900 daltons11

[M. R. Arkin and Wells, 2004]). The metabolome refers to the complete set of small-molecule

metabolites found at a given time within a biological sample.

Indeed, an organism could not function properly if its metabolism is out of order. The idea

that we could infer about a person’s health from his or her biological fluids dates back to

the medieval period. In the Middle Ages, people brought flasks containing their urine to

the doctor (Figure 1.7a), and the doctor would diagnose their conditions based on the urine

wheel (Figure 1.7b). Visual inspection of urine is actually still used as a first-hand reference

for self-diagnosis nowadays – for instance, if the urine is red, the patient may be suffering

from kidney disease or various other conditions [U.S. National Library of Medicine, 2018].

(a) People giving samples of urine to
Constantine the African, a physician in
the 11th century [Newton, 1994].

(b) A medieval urine wheel mapping color of the
urine to diseases [Jungersen, 2004].

Fig. 1.7 Uroscopy in the Middle Ages.

Fast forwarding to the contemporary era, Roger Williams introduced the concept that indi-

viduals might have a “metabolic profile” that could be reflected in the composition of their

biological fluids [R. J. Williams, 1956]. [Boulton et al., 1967] used paper chromatography

11One dalton, often denoted as u, is 1
12 of the mass of a carbon-12 atom [McNaught, 1997].
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and suggested a possible association between metabolic patterns in urine and diseases such

as schizophrenia. With technological advancements, we could now quantitatively measure

metabolic profiles much more accurately and meticulously. This paves the way for the

emerging field of metabolomics, which aims to study the metabolome as well as all the

chemical processes involving metabolites [Shulaev, 2006; Patti et al., 2012].

1.1.3.1 Measuring the metabolome

To measure the metabolome, we first need to prepare the biological sample. This could

be serum, urine, saliva or cultured cells. Biological samples are often pulverized into

smaller particles in order to increase their surface area exposed to the extraction buffer

chosen based on the chemical characteristics of the samples [Cambiaghi et al., 2016]. The

prepared sample, by nature, is a highly complex mixture. Hence, prior to applying certain

detection methods, we could simplify it by separating some compounds from the others.

Common compound separation methods include gas chromatography (GC) [James and

Martin, 1952], high-performance liquid chromatography (HPLC) [Knox et al., 1978] and

capillary electrophoresis (CE) [Manz et al., 1992].

There is a variety of compound detection techniques to quantify the metabolome from the

prepared biological sample. Two examples are mass spectrometry (MS) and nuclear magnetic

resonance (NMR) spectroscopy.

Mass spectrometry

The basic idea behind MS is to ionize chemical species and plot a mass spectrum (like Figure

1.8) of the ion signals sorted according to their mass-to-charge ratio (m/z) [Fenn et al., 1989].

Each peak in a mass spectrum shows a signal of unique m/z in the sample, and heights of

the peaks correspond to the relative abundance of the various signals in the sample [Broad

Institute, 2018].

MS is one of the most widely applied techniques, as it identifies metabolites reliably and

rapidly (the analysis time is between 5 and 140 minutes) [Cambiaghi et al., 2016]. One of

the disadvantages of MS is that it often requires separation by GC, HPLC or CE beforehand

[Cambiaghi et al., 2016].
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Fig. 1.8 Example of a mass spectrum [Broad Institute, 2018].

NMR spectroscopy

First described and measured by [Rabi et al., 1939], NMR is a physical phenomenon in

which nuclei in a magnetic field absorb and re-emit electromagnetic radiation. The electron

distribution and the local magnetic field of the same type of nucleus are usually dependent on

the local geometry (e.g. bond lengths and binding partners), which is reflected in resonance

frequencies [Rabi et al., 1939].

The resonance frequency of a nucleus relative to a standard in a magnetic field is called the

chemical shift (δ ). We could infer about a molecule’s structure based on the position and

number of chemical shifts. NMR spectroscopy takes advantage of this observation to detect

and measure metabolites in a biological sample simultaneously using NMR spectrometers,

which spin the biological sample of interest inside a very strong magnet and detect the NMR

signals produced by radio-frequency receivers.

NMR spectrometers must be tuned to a specific nucleus, for example, the proton (1H). Figure

1.9 is a proton NMR spectrum for ethyl acetate. We could see that different types of 1H have
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different chemical shifts, measured in parts per million (ppm). In the spectrum, the height of

peaks displays the intensity of resonance signals.

NMR spectroscopy is the only metabolite detection method that does not require prior

separation [Beckonert et al., 2007]. Therefore, it is non-destructive and the biological sample

could be retained for further analyses. However, it is less sensitive than MS-based techniques

and needs larger amounts of sample [Cambiaghi et al., 2016].

Fig. 1.9 A proton NMR spectrum for ethyl acetate [Soderberg, 2016].

Different detection and separation techniques have different sensitivity, resolution, and

limitations in identifying different metabolites; therefore, when choosing a method for

measuring the metabolome, we need to consider the characteristic of the biological sample

and what type of analysis we aim to conduct [Castle et al., 2006; A. Zhang et al., 2012].

1.1.3.2 Analysis of metabolomic data

Data pre-processing and cleaning

The raw signals detected by scientific instruments (e.g. mass spectra and NMR data) first

undergo data pre-processing, including noise reduction, time correction, peak detection and

so on, to quantify different metabolites [Cambiaghi et al., 2016].

Data cleaning is crucial in the analysis of the now quantified metabolomic data. Usually,

we identify and filter out variables that are of near-constant or close to zero value, which
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are unlikely to be of use for subsequent analysis [Xia et al., 2012]. Since metabolomic data

is often of different orders of magnitudes among samples and features, it is important to

perform data normalization to reduce systematic biases and failure in identifying significant

associations [Cambiaghi et al., 2016; Xia et al., 2012].

Feature selection and clustering

Typically, metabolomic data takes the form of large and feature-rich data matrices, which is

quite similar with microarray data. Both metabolomic and microarray data analysis seeks to

identify features significantly associated with certain conditions (biomarker discovery) or for

disease diagnosis (classification) [Xia et al., 2012]. Additionally, both kinds of studies are

challenged with the large p, small n problem (high-dimensional feature space with limited

sample size). Therefore, feature selection methods widely adopted in microarray analysis

such as SAM and EBAM (c.f. Section 1.1.2.1) could be adapted to metabolomic studies.

Principal component analysis (PCA) projects the metabolomic data to a lower-dimensional

space capturing variation in the data as much as possible. Clustering of samples with

similar metabolomic profiles could be detected when we conduct data analysis in the lower-

dimensional PCA space. This could assist us in finding novel disease biomarkers.

We could also identify groups of functionally related metabolites with clustering analysis

on the metabolites [Sugimoto et al., 2012]. Hierarchical clustering, k-means clustering

[Hartigan, 1975] and self-organizing maps (SOMs) [Kohonen, 1998] are three commonly

used methods for clustering.

Univariate data analysis

In practice, metabolomic data analysis usually starts with applying univariate methods (i.e.

one variable at a time) like t-tests, one-way analysis of variance (ANOVA) and correlation

analysis, aiming to identify the metabolites that show significant changes under the studied

conditions [Saccenti et al., 2014; Cambiaghi et al., 2016].

Since when dealing with metabolomic data, we need to perform individual statistical tests

for tenths to hundreds of metabolites, just as in GWAS (c.f. Section 1.1.1.2), the issue of

multiple testing arises. There are many approaches dedicated to this issue (e.g. [Hochberg

and Benjamini, 1990] and [Storey, 2002]); these methods are also applicable in the context

of metabolomics [Broadhurst and Kell, 2006].
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Multivariate data analysis and classification

Univariate data analysis could provide us with a general sense of the metabolomic data. Their

preliminary findings could be reinforced (or rejected) via multivariate methods, for example,

partial least squares discriminant analysis (PLS-DA) [Barker and Rayens, 2003].

Like PCA, PLS regression tries to reduce the dimensionality of metabolomic data while

aiming to maintain a large proportion of the observed variation. What’s better, it could also

account for the relationship between the independent and dependent variables. PLS-DA refers

to the PLS regression variant in which the dependent variable is categorical. Since compared

with PCA, PLS-DA is highly prone to over-fitting [Westerhuis et al., 2010], we need to

validate the results by permutation testing or cross-validation [Szymańska et al., 2012].

Successful applications of PLS-DA in metabolomics include identification of metabolomic

markers for distinguishing subgroups of motor neuron diseases [Rozen et al., 2005] and

predicting preeclampsia in early pregnancy [Kenny et al., 2010].

ML methods are also useful in the analysis of metabolomic data, especially for the classifica-

tion of disease status based on metabolomic fingerprints. Unlike PCA or PLS-DA, SVMs

can be extended to nonlinear cases with the help of kernels. [Mahadevan et al., 2008] has

generated a more accurate predictive model than PLS-DA for pneumococcal disease. RF

is an ensemble learning algorithm that consists of many decision trees. By averaging over

several trees, both overfitting and the variance of the algorithm’s performance are reduced.

[T. Chen et al., 2013] has shown that RF outperforms PLS-DA and SVM for predicting

colorectal cancer based on metabolomic profiles.

Pathway analysis

Metabolomic pathway analysis tries to identify the pathways with significant impact on a

given biological process by studying the interactions among genes and metabolites within

a sample [Xia and Wishart, 2010a]. Enrichment analysis and topological analysis are two

commonly used ways to perform pathway analysis on metabolites [Xia and Wishart, 2010a].

In enrichment analysis, we check if there exist significant expression changes (i.e. enrichment

or underrepresentation) among metabolite sets [Cambiaghi et al., 2016]. The set of enriched or

underrepresented metabolites could be mapped to biological pathways or disease conditions,

paving way for further investigation [Xia and Wishart, 2010b].
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Topological analysis, on the other hand, is conducted based on metabolic networks (e.g. the

one shown in Figure 1.10). The importance of individual metabolites in the network could

be measured by their centrality [Aittokallio and Schwikowski, 2006], and the impact of a

certain pathway could be evaluated by summing the importance of all the metabolites in the

pathway and next dividing by the sum of the importance of all metabolites in each considered

pathway [Xia and Wishart, 2010a].

Fig. 1.10 Metabolic network illustrating lipid biosynthesis [Baenke et al., 2013].

Through pathway analysis, the findings (e.g. metabolites selected as biomarkers) from the

previous steps could be linked back to the biological context. Furthermore, the identified

pathways could be integrated with transcriptomic data to gain a whole picture of all relevant

mechanisms [Cavill et al., 2015].
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1.1.4 Integrative analysis of big omics data

In previous sections, we have given an overview of genomic (Section 1.1.1), transcriptomic

(Section 1.1.2) and metabolomic (Section 1.1.3) data, as well as their corresponding an-

alytic methods. As we have seen, generally speaking, the study of omics data refers to

comprehensive, or global, assessment of a complete set of molecules12 [Hasin et al., 2017].

Figure 1.11 is a simplified illustration of the relationship between big omics data. The reality

is much more complex. For instance, as shown in Figure 1.5b, proteins could in return,

influence the expression of genes (the transcriptome); modified cell structures could also

have feedback effects on genes, mRNAs, and proteins.

Fig. 1.11 The relationship between big omics data.

The analysis of each type of omics data could provide us with useful biomarkers of traits

of interest and help us understand the mechanisms underlying different complex diseases

[Hasin et al., 2017]. However, relying on only one data type has certain limitations.

12Extract from the Oxford English Dictionary [Dictionary, 2004]: “There are three different fields of
application for the -ome suffix: (1) in medicine, forming nouns with the sense ‘swelling, tumor’; (2) in botany
or zoology, forming nouns in the sense ‘a part of an animal or plant with a specified structure’; and (3) in
cellular and molecular biology, forming nouns with the sense ‘all constituents considered collectively’.” When
we refer to omics data, the third application is used.
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Take genomic data analysis for example. For many traits, all the known risk loci identified

from past GWAS could only explain a relatively small amount of the heritable component

[T. A. Manolio et al., 2009]. Additionally, common diseases usually result from variations in

gene regulation and not the coding regions of genes [Hasin et al., 2017]. To account for these

problems, integrative analysis with transcriptomic data could be helpful. Different expression

levels between the maternal and paternal allele can be used for the investigation of effects of

rare variants [Rivas et al., 2015], which may resolve part of the missing heritability problem

[T. A. Manolio et al., 2009]. On the other hand, the GRN could help us model changes in

gene regulation (c.f. Section 1.1.2.2).

Integrative analysis of different types of omics data could overcome the disadvantages

of using only one data type (e.g. inaccurate depiction of the truth due to considering

limited types of effects), potentially increase the study’s statistical power and give us a more

comprehensive understanding of the flow of information underlying complex traits [Hasin

et al., 2017; Manzoni et al., 2016]. Based on the initial focus of investigation, there are three

approaches in multi-omics data analysis, namely genome-first (focusing on the mechanisms

through which GWAS loci affect traits), phenotype-first (studying the pathways contributing

to diseases without focusing on one specific locus) and environment-first (investigating how

the environment interacts with genes or perturbs pathways) [Hasin et al., 2017].

One challenge in the integrative analysis of big omics data is differentiating causality from

correlation [Hasin et al., 2017]. This is particularly difficult due to the correlative nature of

omics datasets. Moreover, all analyses of high-dimensional data suffer from the “large p,

small n” problem. This is exaggerated for integrated omics data (compared with a single

type of omics data), since both the complexity and dimensionality of the data elevate. Lastly,

analyzing integrated omics data could be very computationally expensive. Optimization

methods and better hardware (e.g. graphics processing units, or GPUs) need to be utilized in

implementing and carrying out the analysis.

1.2 Lumbar disc degeneration

1.2.1 Elements of the human spine

A human’s spinal column could protect the spinal cord and support his or her head. The

ribs, as well as back and neck muscles, are attached to the spinal column. A child is born
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with approximately 33 vertebrae, but as he or she grows, several vertebrae fuse together.

As shown in Figure 1.12, the adult vertebrae consist of 26 bones – 7 cervical vertebrae, 12

thoracic vertebrae, 5 lumbar vertebrae, the sacrum, and the coccyx.

Fig. 1.12 Sections of the human spine [Lumen Learning, 2007].

Fig. 1.13 An IVD consists of a NP, a peripheral AF and two VEPs [OpenStax, 2013].
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Intervertebral discs (IVDs) are round, rubbery pads placed between adjacent vertebrae. They

could absorb shock and cushion the vertebrae as the body moves. Figure 1.13 is an illustration

of an IVD. The core of an IVD is called nucleus pulposus (NP), which consists of gel-like

matter and a loose network of collagen fibers. The NP allows discs to withstand torsion and

compression, and is surrounded by a tough exterior named annulus fibrosus (AF). The AF

contains a ring of ligament fibers which protects the NP and connects the adjacent vertebrae.

Between the vertebral body and the IVD, there are vertebral endplates (EPs). EPs are thin

layers of cartilage covering the entire NP but not AF. They could prevent NP from bulging

into the vertebral body and absorb pressure.

1.2.2 Lumbar disc degeneration and lower back pain

1.2.2.1 Lower back pain as a common global health problem

Lower back pain (LBP) (Figure 1.14a) is one of the most common global health issues and

a major cause of disability [Kaplan et al., 2013]. [Vos et al., 2012] estimated that LBP is

one of the top ten conditions accounting for the highest number of disability-adjusted life

years13 (DALYs) worldwide. Some patients with severe LBP could develop sciatica, i.e. pain

spreading down the leg from the lower back (Figure 1.14b). Sciatica also has a great public

health burden due to its high incidence and major socioeconomic costs [Younes et al., 2006].

The lifetime prevalence of common LBP is estimated to be 60% to 70% in industrialized

countries [Kaplan et al., 2013]. Additionally, [Hoy et al., 2012] has shown that the global

1-month prevalence of activity-limiting LBP is 23.2%±2.9%, i.e. during one month, out of

100 people, on average 20 to 26 suffer from activity-limiting LBP in the global population.

Since LBP is such a common condition that could affect a patient’s work or study performance

as well as general well-being, identifying potential biomarkers and risk factors for LBP is of

great importance [Kaplan et al., 2013].

1.2.2.2 Lumbar disc degeneration as a cause for lower back pain

One of the most common causes for back pain is intervertebral disc degeneration (IDD),

which refers to the deterioration of IVDs (e.g. loss of cushioning ability) over time [National

13The disability-adjusted life year is the number of years lost due to bad health, disability or early death. It is
a measure of disease burden, the impact of a health problem measured by mortality, financial cost, etc.
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(a) Location of LBP [Leotraining, 2016]. (b) Location of sciatica [Diagrams for all, 2018].

Fig. 1.14 Illustration of LBP and sciatica.

Institute of Neurological Disorders and Stroke, 2017]. The process of disc degeneration

is an aberrant response to progressive structural defect mediated by cells [M. A. Adams

and Roughley, 2006]. A degenerate disc has a structural defect and its aging, in terms of

biochemical, histologic, metabolic and functional changes, is accelerated [M. A. Adams and

Roughley, 2006].

If we refer to Figures 1.12 and 1.14a, we could see that LBP happens in the lumbar region

of the spine (vertebrae L1 to L5), which supports much of the weight of the upper body.

Therefore, lumbar disc degeneration (LDD), in specific, is relatively more relevant to LBP.

LDD could be evaluated by magnetic resonance imaging (MRI), a medical imaging technique

which forms detailed pictures of the body’s anatomy using a magnetic field and radio waves.

Typical radiographic observations related to LDD include disc space narrowing, disc bulging,

disc herniation, disc dehydration, modic changes, EP damages and annular tears [M. A.

Adams and Roughley, 2006].
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Disc space narrowing

The height of an IVD is influenced by several factors, ranging from dehydration induced by

increased load (potentially reversible) to the reduction of disc tissue volume due to structural

failure (often irreversible) [Berlemann et al., 1998].

Prior to the wide application of MRI, disc space narrowing was probably the medical imaging

finding most frequently used to indicate LDD [Battié et al., 2004]. However, with the

prevalence of MRI, we could attain a more detailed image of the IVD, and it is found that the

existence of other types of disc changes, e.g. bulging, render it less clear what disc narrowing

reflect [Battié et al., 2004; Berlemann et al., 1998]. Hence, changes in disc volume may be

more relevant to LDD than changes in disc height [Battié et al., 2004].

Still, severe disc narrowing is a strong indicator of LDD, though severe narrowing on a single

level is more likely to reflect a traumatic, rather than a systemic origin [Frobin et al., 2001].

Disc bulging and herniation

Disc bulging (DB) and herniation both happen when radial fissures allow migration of NP

relative to AF such that the IVD periphery is affected [M. A. Adams and Roughley, 2006].

If there exists protrusion but no tear in the outer layer of the disc, we observe DB. If the AF

breaks and the NP has leaked out of it, disc herniation is present. Therefore, disc herniation

is also referred to as a “slipped” disc, though this term is inaccurate since the IVDs are firmly

attached between the vertebrae and actually cannot slip out of place [OpenStax, 2013].

Potentially resulting from intensive repetitive loading, DB and disc herniation are suggested

to be associated with LDD and LBP [Videman et al., 2003].

Disc dehydration

In the laboratory, we usually do not observe disc herniation in severely degenerated discs,

presumably because the NP is so dehydrated that it could no longer exert hydrostatic pressure

to the AF [M. A. Adams and Roughley, 2006]. Dehydration of the NP reduces the flexibility

and often the height of the disc, which could reflect the degree of LDD [Luoma et al., 2001].

Disc dehydration could be measured in terms of signal intensity loss (SIL) on MRI. [Schnei-

derman et al., 1987] proposed a classification scheme for SIL – grade 0 indicates a disc with
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a normal height and signal intensity, grade 1 marks a disc with a speckled pattern of SIL,

grade 2 refers to a disc with diffuse SIL, and grade 3 corresponds to a black disc with disc

narrowing. [Luoma et al., 2001] shows that SIL may be a more sensitive measure of LDD

compared to disc narrowing itself.

Modic changes

Modic changes (MCs) are vertebral body marrow changes adjacent to the EPs, which could

be observed through MRI [Modic et al., 1988].

Typically, MCs could be categorized into three types [Modic et al., 1988]. Type 1 MC refers

to marrow edema and disruption of the EPs, type 2 MC indicates fatty degeneration of the

adjacent vertebral marrow, whereas type 3 MC represents the presence of bone sclerosis

(hardening) and relative loss of bone marrow [De Roos et al., 1987; Modic et al., 1988].

When different types (mainly 1 and 2 or 2 and 3) are observed simultaneously at the adjacent

vertebral body, we declare MC of mixed types [Määttä et al., 2016].

In previous studies, MCs are found to be highly associated with LDD [Modic et al., 1988]

and LBP in population-based [Kjaer et al., 2005; Mok et al., 2016] as well as clinical cohorts

[Toyone et al., 1994; O. K. Jensen et al., 2014].

Endplate damages

As could be seen from Figure 1.13, upon compression, EPs are the spine’s “weak spot”.

Indeed, damage of the EP may decompress the adjacent NP and transfer the load to the AF,

causing it to bulge into the NP cavity [M. A. Adams et al., 2000; M. A. Adams and Roughley,

2006]. If NP flows through a damaged EP into the adjacent vertebra, a Schmorl’s node (SN)

could be created [Hamanishi et al., 1994].

It has been shown that under experimental conditions, the disrupt of endplate could lead to

IVD [Holm et al., 2004]. In particular, SNs are shown to be highly heritable and related to

LDD [F. Williams et al., 2007].

Annular tears

An annular tear occurs when the AF rips resulting from too much stress on the IVD – it is

often classified into three categories, according to its shape and location [Osti et al., 1992].
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First of all, typically as a result of natural aging, radial tears extend from the center of

the IVD to the outer layer and could cause disc herniation [Osti et al., 1992]. Secondly,

peripheral tears occur in the outer fibers and are usually due to bone outgrowth or injury –

these could contribute to LDD [Osti et al., 1992]. Finally, circumferential tears are concentric

tears between the outer layers, which normally result from injury or compressive stress

concentrations in older discs [Osti et al., 1992; Goel et al., 1995].

The annular tears could be seen on MRI as areas with a brighter signal, which are called high

intensity zones (HIZs). [Peng et al., 2006] shows that the HIZs of patients with LBP could

be considered as reliable indicators for painful AF damage.

1.2.3 Prevalence of lumbar disc degeneration

The epidemiology14 of LDD is difficult to discuss due to the lack of a standard definition (or

a precise measurement) of disc degeneration [Battié et al., 2004]. To attain better consistency

and reliability, we usually study LDD-related MRI findings (c.f. Section 1.2.2.2) instead.

The prevalences of different MRI features regarding LDD have been estimated from population-

based cohorts in many previous studies. The results are shown in Table 1.1. As could be seen,

the reported prevalences vary vastly across studies. This is probably because the cohorts

recruited in different studies have different age distributions and exposure to risk factors

[Battié et al., 2004]. Another possible reason is the variation in the definitions and readings

of the MRI features [Battié et al., 2004]. Future research may benefit from devising a scheme

or algorithm (e.g. using computer vision) for standardized definitions of MRI findings related

to LDD [Battié et al., 2004].

1.2.4 Etiology of lumbar disc degeneration

The etiology of LDD is highly multifactorial – genetic and environmental risk factors, as

well as their interactions, could contribute to LDD [Battié et al., 2004].
14Epidemiology is the study of the incidence, distribution, and possible determinants of health and disease

conditions [Last et al., 2001].
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Table 1.1 Prevalence of different MRI features regarding LDD in the general population.

MRI feature Prevalence

Disc narrowing 15% – 53%
Disc bulging 22% – 48%

Signal intensity loss 9% – 86%
Modic change 19% – 56%

Schmorl’s node 6% – 79%
High intensity zone 15% – 28%

Results are from [Battié et al., 2004; T. S. Jensen et al., 2010; Y. Wang et al., 2012; Teraguchi et al., 2016].

1.2.4.1 Age, sex and environmental risk factors

As a progressive disorder, LDD is heavily influenced by age. Previous research has revealed

that signs of LDD could be identified as early as in childhood and across age groups, great

variability in LDD-related MRI features exists [Battié et al., 2004].

Regarding sex, it has been shown that male discs tend to be more degenerated than female

discs at most ages [J. A. Miller et al., 1988]. However, this gender influence is still controver-

sial, since some later studies have failed to find a significant association between gender and

LDD [Teraguchi et al., 2014].

Apart from age and sex, it has been found that LDD could be worsened by various risk

factors, for instance, obesity [Samartzis et al., 2012; Teraguchi et al., 2014] and smoking

[Battié et al., 1991]. It is also noteworthy that contrary to popular belief, [Battié et al., 2009]

found that occupational and leisure physical loading conditions throughout adulthood do not

contribute to LDD – quite the opposite, routine loading may actually benefit the IVD. The

association between physical loading and LDD is still controversial and under investigation

[Battié et al., 2004].

1.2.4.2 Genetic risk factors

After adjusting for age, weight, smoking, occupation and physical activity, the heritability of

LDD15 is estimated to be 74% with a 95% confidence interval of (64%,81%) by twin study

methods [Sambrook et al., 1999].
15As a summary score taking into consideration disc height, signal intensity, bulging, and anterior osteophyte

formation [Sambrook et al., 1999].
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In light of this relatively high heritability, researchers have conducted GWAS aiming to

identify novel loci associated with LDD and gain a better understanding of LDD’s underlying

genetic factors. However, unfortunately, most of the genes found to be significantly associated

with LDD from various GWAS have a weak level of cumulative association evidence [Eskola

et al., 2012]. According to [Eskola et al., 2012], the only previously reported genes with

moderate levels of evidence are ASPN (D-repeat), COL11A1 (rs1676486), GDF5 (rs143383),

SKT (rs16924573), THBS2 (rs9406328) and MMP9 (rs17576).

This lack of credibility of most reported genetic associations is, again, partly due to the

often ambiguous definitions of LDD phenotypes [Eskola et al., 2012]. Additionally, large

population-based cohorts are needed for future research [Eskola et al., 2012].

1.2.4.3 Metabolomic risk factors

In an adult’s body, the IVDs are avascular (i.e. with few or no blood vessels). Metabolites are

transported into the disc by diffusion (small molecules) or bulk fluid flow (large molecules)

via the EP [M. A. Adams and Roughley, 2006], as illustrated in Figure 1.15. In recent years,

the role of altered metabolism in the development and progression of LDD has gained more

and more interest [Samartzis et al., 2013a].

Fig. 1.15 Routes of metabolite transport from surrounding blood vessels into the center of an
IVD via the EP [M. A. Adams and Roughley, 2006].
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One of the examples illustrating how metabolism could potentially influence LDD is related

to metabolite transport. Experiments have shown that a chronic lack of oxygen renders disc

cells quiescent, and a chronic deficiency of glucose can kill them [Horner and Urban, 2001].

Deficiencies in nutrient supply reduce the number of viable disc cells and limit the metabolic

activity of the cells that are still alive [Urban et al., 2004], which leads to degeneration

and limited ability to recover from any injury. By studying diffusion, [Rajasekaran et al.,

2004] has demonstrated that EP permeability (and hence disc metabolite transport) normally

reduces during aging and increase when degeneration and EP damages are present. Therefore,

studying disk metabolism could probably help us distinguish aging from degeneration.

Another example is relevant to the presence of anaerobic metabolism when the center of

an IVD suffers from low oxygen tension. Anaerobic metabolism results in higher levels of

lactic acid and a lower pH (potential of hydrogen, a scale of acidity/basicity) value [Urban

et al., 2004], and lactic acid has been shown to be a metabolic marker for discogenic back

pain [Keshari et al., 2008].

The current literature about the influence of altered metabolism on LDD is still quite limited.

The analysis of the relationship between metabolomics and LDD could help us gain insight

into the underlying biological mechanism of the degeneration process, as well as identify

novel biomarkers for LDD, which could potentially aid diagnosis and treatment of LBP.

1.3 Aims and organization of this thesis

1.3.1 Research objectives

LBP is one of the most prevalent global health problems and a main cause of disability

[Kaplan et al., 2013]. Since LDD is one of the major reasons for LBP and could be measured

more accurately utilizing MRI techniques, in this thesis, I choose to focus on studying LDD

through a set of integrative analyses of genomic, metabolomic and phenotypic data from a

large population cohort.

The first objective of this thesis is to identify novel genetic variants associated with various

metabolomic measurements via GWAS. Through polygenic scoring, this thesis aims to

estimate the human metabolome based on genomic data. Secondly, the association between

(estimated) metabolomic data and LDD-related phenotypes is tested. I hypothesize that the
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(estimated) metabolomic measurements could be used as potential biomarkers for LDD and

seek to discover them, if any, in this step.

The ultimate aim of this thesis is (1) to propose a new way of analyzing big omics data

in an integrative manner, utilizing metabolome prediction models; and (2) to gain a better

understanding of the underlying biological mechanisms of LDD (especially the ones related

to altered metabolism) with a data-driven approach.

1.3.2 Thesis organization and flow of data analysis

This thesis is divided into six chapters, organized as follows.

To begin with, Chapter 2 provides details of the studied cohort and describes how the data

analyzed in this thesis is collected and pre-processed. Findings of exploratory analysis

of the serum metabolome and its phenotypic associations are presented in Chapter 3, and

results of the genome-wide association studies of metabolomic measurements are shown in

Chapter 4. In Chapter 5, basic and LDD-related phenotypes are associated with metabolomic

measurements estimated via polygenic scoring. This thesis concludes by summarizing and

discussing its findings, as well as outlining potential areas for future research.

Figure 1.16 demonstrates the overall flow of analysis in this thesis.



1.3 Aims and organization of this thesis 33

Fig. 1.16 Organization and flow of analysis of this thesis.





2

Data collection and pre-processing

2.1 Sample recruitment

The population cohort studied in this thesis consists of 3,584 volunteers recruited from 1999

to 2011 by open invitation, following approval from the institutional ethics board [K. M.

Cheung et al., 2009; Samartzis et al., 2011; Y. Li et al., 2016]. Of all the individuals, 2,139

(59.68%) were female.

The volunteers who are of southern Chinese ancestry, living in Hong Kong and between

15 and 55 years old were selected for participation in the study. Additionally, I excluded

the subjects with a known history of spinal tumor, spinal infection or spinal deformities

[K. M. Cheung et al., 2009; Samartzis et al., 2011; Y. Li et al., 2016].

2.2 Data collection

2.2.1 Questionnaire data

After obtaining informed consent from the volunteers, we asked them to fill out questionnaires

collecting basic personal information, including their age (in years) and cigarette smoking

status (in pack-years1).

1Pack-year is calculated via (Packs smoked per day)× (Years as a smoker). One pack-year is simply
smoking 20 cigarettes a day for one year. If someone has smoked 10 cigarettes a day for 6 years, he or she
would have a 3 pack-year history. If someone is a non-smoker, he or she would have a 0 pack-year history.



36 Data collection and pre-processing

Clinical assessments were also included in the questionnaire. To start with, the volunteers

were asked to specify whether they have ever experienced lower back pain or sciatica.

Moreover, the visual analog scale (VAS; c.f. Figure 2.1) enabled the individuals to indicate

their pain intensity in a continuous manner. We asked them to report both the VAS score on

the test day and the severest VAS score ever experienced.

Fig. 2.1 Example of the visual analog scale [Yale University, 2018]. The volunteer was asked
to draw a cross anywhere on the scale, and we measured the length from “0” to the cross.

To quantify the disability incurred by LBP, we invited the individuals to fill out the Oswestry

LBP questionnaire, which contained ten topics regarding the intensity of pain, lifting, sexual

function, social life, sleep quality, as well as ability to care for oneself, walk, sit, stand and

travel [Fairbank and Pynsent, 2000].

Each of the topics was reflected by six statements describing possible scenarios in the

volunteer’s life, and the individual was asked to select the statement closest to his or her

situation. The six statements each corresponded to a score of 0 (least amount of disability)

to 5 (most severe disability); the ten scores (from the selected statements for the ten topics)

were summed and multiplied by two to obtain the Oswestry Disability Index (ODI), which

ranges from 0 (no disability) to 100 (maximum disability possible) [Fairbank and Pynsent,

2000].

Tables 2.1 and 2.2 summarize the collected questionnaire data. The cohort mainly consisted

of people from 45 to 55 years old, and the majority was non-smokers. Most of them have

experienced LBP at some point in their life, but less than half have sciatica. Most volunteers

(72.21%) in the cohort had minimal disability (ODI < 20%), though a small proportion of

people (3.49%) were severely disabled by LBP, crippled, or even bed-bound (ODI > 41%).
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Table 2.1 Summary statistics of binary questionnaire data.

Phenotype Proportion of trues Proportion of falses # of non-NAs

Smoking 0.1286 0.8714 3429
LBP 0.8018 0.1982 3300

Sciatica 0.4299 0.5701 3296

Table 2.2 Summary statistics of continuous questionnaire data.

Phenotype Minimum First quartile Median Mean Third quartile Maximum # of non-NAs

Age 17.36 45.83 52.22 50.03 56.33 86.33 1823
Smoking (pack-years) 0.000 0.000 0.000 1.652 0.000 95.000 3395

VAS (test day) 0.00 0.00 5.00 15.53 26.00 100.00 3186
VAS (severest) 0.00 14.00 52.00 48.65 78.00 100.00 3186

ODI 0.000 0.000 4.444 9.906 14.000 95.560 3179

2.2.2 Anthropometric measurements

Anthropometric measurements were taken for a majority (over 88%) of volunteers. Height

(in meters) was measured without shoes, and weight (in kilograms) was measured in light

clothing. The mean height of the measured individuals was 1.60 with a 0.09 standard

deviation (SD), whereas the weight was of mean 61.07 with SD = 11.40.

The body mass index (BMI) was then calculated via Weight
Height2 . BMI is a commonly used way

to determine whether a person is overweight, underweight or of normal weight. The mean

BMI was 22.93, with 3.30 SD.

2.2.3 Magnetic resonance imaging scan and evaluation

From the whole cohort, 1,416 probands (the first recruited subject within a family) were

followed longitudinally (two time points) with MRI scans. On each volunteer, MRI of the

whole spine was performed using sagittal T2-weighted fast spin-echo sequences (repetition

time = 3,000 milliseconds; echo time = 92 milliseconds; slice thickness = 5 millimeters)

[K. M. Cheung et al., 2009; Samartzis et al., 2011; Y. Li et al., 2016]. In this thesis, I only

consider the second time point2 since it used MRI machines with a higher resolution, and its

time was more akin to metabolomic measurements.
2The questionnaire data and anthropometric measurements described in Sections 2.2.1 and 2.2.2 were also

measured over two time points; I only use those at the second time point.
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This thesis is focused on the lumbar region of the spine, and we asked Dr. Jaro Karppinen

(denoted as JK), an experienced physician to assess the L1 to L5 region (c.f. Figure 1.12) of

the MRI scans, blinded to the clinical data of the subjects. From JK’s reads, I selected five

MRI features associated with LDD for analysis in my study, which are disc bulging (DB),

signal intensity loss (SIL), high intensity zone (HIZ), modic change (MC) and Schmorl’s

node (SN). Description of these features could be found in Section 1.2.2.2.

Regarding DB, JK graded a disc with no displacement as 0, a disc with protrusion as 1, and a

disc with extrusion as 2. The counts and distribution of DB = 0,1,2 at each disc level for all

the studied volunteers are shown in Table 2.3 and Figure 2.2. On lower disc levels, there tend

to be more discs that have developed DB, and the DB condition generally becomes more

severe (e.g. extrusion instead of protrusion).

Table 2.3 Contingency table of the counts of each DB status at different disc levels.

Disc level DB=0 DB=1 DB=2 Unknown

L1 1385 28 3 0
L2 1304 111 1 0
L3 1158 256 2 0
L4 867 534 9 6
L5 829 567 18 2

SIL was measured according to Schneiderman’s scoring (SS) scheme (on a scale of 0,1,2,3),

whose details are described in Section 1.2.2.2. Table 2.4 is a contingency table of the

counts of each SS value at different disc levels (also c.f. Figure 2.2 for the distribution),

demonstrating that disc dehydration, or SIL, is greater at lower disc levels.

Table 2.4 Contingency table of the counts of each SS value at different disc levels.

Disc level SS=0 SS=1 SS=2 SS=3 Unknown

L1 1206 144 39 27 0
L2 936 283 143 54 0
L3 632 424 280 79 1
L4 383 361 406 260 6
L5 431 292 432 258 3

For HIZ, MC and SN, JK marked the presence (or absence) of each phenotype on each disc

level for all the individuals. As could be seen in Table 2.5 and Figure 2.2, the occurrence
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of HIZ, MC and SN are quite low in the studied population. HIZ and MC generally worsen

when the disc level is lower, but the trend is opposite for SN. This demonstrates the possibly

developmental nature of SN.

Table 2.5 Contingency table of the counts of HIZ, MC and SN status at different disc levels.

Phenotype Disc level Absence of phenotype Presence of phenotype Unknown

HIZ L1 1374 1 41
HIZ L2 1361 14 41
HIZ L3 1354 21 41
HIZ L4 1229 145 42
HIZ L5 1184 190 42

MC L1 1372 3 41
MC L2 1359 16 41
MC L3 1350 25 41
MC L4 1297 77 42
MC L5 1244 130 42

SN L1 1328 88 0
SN L2 1314 102 0
SN L3 1349 67 0
SN L4 1373 42 1
SN L5 1406 9 1

Additional to JK’s reads, Dr. Dino Samartzis (denoted as DS), another expert in LDD, has

read the MC types in the lumbar region for another subset of 1,713 probands in the cohort

(c.f. Table 2.6). In the table, a subject with “mixed types" can have a combination of any of

types from 1 to 3. Only a relatively small proportion of individuals suffered from any type of

MC, which agreed with JK’s reads. Within the people with MC, type 2 MC was the most

prevalent, followed by mixed types.

Table 2.6 Counts of different MC types in the cohort (read by Dr. Samartzis).

Type Count Notation

None 1,363 0
Type 1 37 1
Type 2 235 2
Type 3 0 3

Mixed types 78 4
Sum 1,713 /
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Fig. 2.2 Bar plots showing the distributions of DB, SS, HIZ, MC and SN at different disc
levels. The missing values are not plotted, so whenever there is missing data for a phenotype
on a certain disc level, in that specific bar plot, the labeled percentages of plotted bars do not
add to 100%. MRI images courtesy of [Y. Li, 2016].
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This thesis studies (1) the 5 MRI phenotypes read by JK over 5 disc levels (5×5 = 25 in

total); and (2) DS’s MC type reads in the lumbar region. In JK’s reads, 1,293 individuals had

complete MRI phenotypic measurements, whereas for DS, 1,713 individuals had no missing

data.

2.2.4 Genotyping

The blood samples of 2,482 volunteers were obtained for genotyping. DNA was extracted

from the blood samples and underwent concentration quality control. The DNA samples

were next genotyped using Illumina’s OmniZhongHua-8 BeadChip, which is a population-

specific whole genome array covering 77% of common variation (minor allele frequency,

or MAF > 5%), 73% of intermediate variation (MAF > 2.5%) as well as 65% of low

frequency variation (MAF > 1%) in the Chinese population [Illumina, 2016]. Therefore,

OmniZhongHua-8 BeadChip is ideal for Chinese population GWAS and hence my study,

which is based on a population cohort of southern Chinese.

In total, 900,015 SNPs (on chromosomes 1 to 22 and chromosome X) were genotyped. The

raw data was converted to PLINK format [Purcell et al., 2007] using Illumina’s GenomeStu-

dio.

2.2.5 Metabolomic measurements

The serum samples of 814 individuals were acquired for metabolomic measurements. After

extracting lipids from the serum samples utilizing a standard protocol described in [Folch et

al., 1957; Adosraku et al., 1994], we performed 1H NMR measurements over three molecular

windows for all serum samples on a Bruker AVANCE 500 DRX spectrometer operating at

500.13 MHz, following a procedure presented in [Tukiainen et al., 2008].

As illustrated in Figure 2.3, the three molecular windows are lipoprotein lipids (LIPO), low

molecular weight metabolites (LMWM) and lipid extracts (LIPID). The LIPO window mainly

consists of broad signals of macromolecules, e.g. albumin and lipoprotein lipids [Tukiainen

et al., 2008]. On the other hand, the LMWM window applies a pulse sequence suppressing

the macromolecule signals, hence enabling the detection of small molecules [Tukiainen et al.,

2008], e.g. amino acids, lactate, and glucose. When we extracted lipids from the samples, the

lipoprotein particles were broken down, yielding useful information regarding the individual
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Fig. 2.3 Three molecular windows of 1H NMR measurements [Tukiainen et al., 2008].
Acronyms used in the figure: EC, esterified cholesterol; FA, fatty acid; FC, free cholesterol;
PC, phosphatidylcholine; PGLY, phosphoglycerides; PUFA, polyunsaturated fatty acid; sat,
saturated; SM, sphingomyelin; TC, total serum cholesterol; TG, total serum triglycerides.

lipid species inside lipoprotein particles – this information is reflected in the LIPID window

[Tukiainen et al., 2008].

The water region in the LMWM window, as well as the narrow spectral regions (marked

with grey squares in Figure 2.3) with potential residual solvent peaks in the LIPID window

were excluded from subsequent analysis [Tukiainen et al., 2008]. The raw metabolomic

data was then quantified using a protocol described in [Tukiainen et al., 2008; Larmo et al.,

2013], which includes data pre-processing (scaling, transforming, corrections), fitting cross-

validated regression models for the LIPO window, as well as lineshape fitting of the LMWM

and LIPID windows.
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The protocol resulted in 137 quantified metabolomic measurements, falling into the three

molecular windows (c.f. Table 2.7). Among the 814 volunteers with serum samples collected,

757 had complete metabolomic measurements (i.e. no missing data).

Table 2.7 Types of quantified metabolomic measurements.

Window No. of measurements Description

LIPO window 91 Lipoprotein lipids
LMWM window 23 Low molecular weight metabolites
LIPID window 23 Lipid extracts

2.3 Data pre-processing

2.3.1 Quantifying lumbar disc degeneration

For ease of subsequent analysis, I devise a scheme for quantifying LDD, i.e. defining

composite MRI phenotypes based on the reads by the two clinicians.

2.3.1.1 Truncated normal conversion of MRI reads

The truncated normal (truncnorm) distribution is a probability distribution derived from that

of a normally distributed random variable by truncating the random variable from either

below or above (or both).

Suppose X is a random variable following N(µ,σ2). If we condition X on a < X < b,−∞ ≤
a < b ≤ ∞, it would follow a truncated normal distribution.

The probability density function (PDF) of a truncated normal distribution is:

f (x; µ,σ ,a,b) =


φ( x−µ

σ
)

σ

(
Φ( b−µ

σ
)−Φ( a−µ

σ
)
) if a ≤ x ≤ b,

0 otherwise
(2.1)

where

φ(ξ ) =
1√
2π

exp
(
−1

2
ξ

2
)

(2.2)
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and

Φ(ξ ) =
1√
2π

∫
ξ

−∞

e−t2/2dt (2.3)

φ(ξ ) and Φ(ξ ) are, respectively, the PDF and cumulative distribution function of the standard

normal distribution.

From Equation 2.1, we could observe the following.

• If a =−∞, by definition, Φ

(
a−µ

σ

)
= 0. The distribution is either upper truncated (if

b < ∞) or non-truncated (if b = ∞).

• If −∞ < a < b < ∞, the distribution is doubly truncated.

• If b = ∞, by definition, Φ

(
b−µ

σ

)
= 1. The distribution is either lower truncated (if

a >−∞) or non-truncated (if a =−∞).

The truncated normal distribution could be used to transform the MRI reads (either boolean

or ordinal) into continuous truncnorm scores.

Take SS (ordinal; possible values: 0,1,2,3) for instance. To start with, for each disc level,

the standard normal distribution N(0,1) was cut into four parts so that their areas were,

respectively, the proportion of people with SS = 0,1,2,3 for that disc level. Now there were

altogether four truncated normal distributions, corresponding to the four areas. The mean

of each truncated normal distribution3 was then calculated, and SS was directly converted

to these means (SS = 0 was converted to the mean of the truncated normal distribution

corresponding to the leftmost area and so on). Figure 2.4 is an illustration of this procedure.

2.3.1.2 The relationship between MRI reads and disc levels

As could be seen in Figure 2.2, the severity of LDD-related conditions was highly dependent

on disc levels. This association is further visualized in Figure 2.5 using conditional density

plots [Meyer et al., 2017], which are generalized from spine plots4 [Hummel, 1996].

3The mean of truncnorm(µ,σ ,a,b) is µ +σ
φ( a−µ

σ )−φ

(
b−µ

σ

)
Φ

(
b−µ

σ

)
−Φ( a−µ

σ )
.

4Spine plots, or spinograms, are derived from stacked bar plots, where the widths of the bars reflect the
relative frequencies of x and the heights of the bars correspond to the conditional relative frequencies of y
in every x category [Hummel, 1996]. Spine plots discretize x, whereas conditional density plots perform
smoothing on the explanatory variable [Meyer et al., 2017].
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Fig. 2.4 Converting SS on L1 into truncnorm score. The truncated normal distributions
would be different for each MRI measurement on each disc level.

Again we could observe from Figure 2.5 that (1) there were more discs suffering from DB,

SIL, HIZ, and MC at lower disc levels; and (2) there were fewer discs with SN at lower disc

levels. The validity of these observations could be examined through log-linear models.

Take SS for instance. We would like to test for complete independence between SIL score

SS and disc level L using the data in Table 2.4, a 5×4 contingency table (here the column

for missing data is omitted). Denote the probability of an observation falling into cell (i, j)

as πi j (i = 1, · · · ,5; j = 1, · · · ,4), i.e. SS = j−1 is observed on disc level L = i. The joint

distribution of SS and L is then defined by πi j. Furthermore, denote the observed count in cell

(i, j) as yi j, which is a realization of a random variable Yi j following Poisson(nπi j), where n

is the total number of observations.

The null hypothesis of our model assumes complete independence between SS and L:

H0 : πi j = πi.π. j (2.4)

where πi. (i = 1, · · · ,5) is the marginal probability that an observation falls in row i of Table

2.4 and π. j ( j = 1, · · · ,4) is the corresponding column margin.
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Fig. 2.5 Conditional density plots of DB, SS, HIZ, MC and SN over L1 to L5. MRI images
courtesy of [Y. Li, 2016]. Spine image courtesy of [Cedars-Sinai, 2018].

The expected counts µi j under H0 satisfy:

log µi j = lognπi j = logn+ logπi.+ logπ. j (2.5)

The maximum likelihood estimators (MLEs) of µi j under H0 then derived:

µ̂i j =
yi.y. j

n2 (2.6)

To test for complete independence, I performed a likelihood ratio test comparing H0 and the

saturated model (where each cell in Table 2.4 has its own distribution).
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Results of the fitted log-linear models are visualized in Figure 2.6. Generally speaking, there

were (1) significantly more discs suffering from DB, SIL, HIZ, and MC at lower disc levels;

and (2) significantly fewer discs with SN at lower disc levels. Additionally, The five disc

levels seemed to form two clusters – {L1, L2, L3} and {L4, L5}. These are in line with past

studies [Y. Li et al., 2016], and support that SN is more developmental versus the other four

MRI phenotypes5.

Fig. 2.6 Association plots indicating our data’s deviation from log-linear models assuming
complete independence between MRI phenotypes and disc levels. Spine image courtesy of
[Cedars-Sinai, 2018].

5Note that in human beings, more weight is exerted on the lower disc levels on average since our pos-
ture is often upright. Therefore, if a spinal condition is more degenerative in nature, it would occur more
frequently/severely at lower disc levels.
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2.3.1.3 Defining composite MRI phenotypes

Since it is more meaningful to take into account an overall picture of the disc degeneration

status, composite scores were defined as sums of certain truncnorm-converted single pheno-

types, grouped according to disc level (L1 to L3 as upper, L4 and L5 as lower [Y. Li et al.,

2016]), type of MRI phenotype, or the hypothesized fundamental cause of the condition

(degenerative versus developmental).

The 25 continuous composite scores are listed below. Note that all the MRI measurements

were first truncnorm-converted.

• Considering all types of MRI measurements (10 in total)

– Degenerative score: SS L3, 4, 5 + DB L3, 4, 5 + HIZ L3, 4, 5 [Y. Li et al., 2016]

– Developmental score: SN L1, 2, 3, 4, 5 + SS L1, 2 + DB L1, 2 [Y. Li et al., 2016]

– Overall LDD severity: Add up all MRI measurements on all disc levels

– Upper LDD severity: Add up all the MRI measurements on L1 to L3

– Lower LDD severity: Add up all the MRI measurements on L4 and L5

– Li LDD severity: Add up all the MRI measurements on Li (i = 1, · · · ,5)

• Considering one type of MRI measurement (15 = 3×5 in total)

– MRI measurement MRIM (MRIM = DB, SN, SS, HIZ, MC)

* Overall MRIM: Add up MRIM L1 to L5

* Upper MRIM: Add up MRIM L1 to L3

* Lower MRIM: Add up MRIM L4 and L5

The summary statistics of the continuous composite phenotypes could be found in Table 2.8.

For the sake of comparison, I first divided the composite scores by the number of single MRI

phenotypes used to calculate the score before calculating the summary statistics. For example,

all the degenerative scores were divided by 9 prior to summary statistics calculation. In

subsequent analysis, though, I would use the raw composite scores instead of the normalized

(by division) ones.
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Since to clinicians studying LDD, MC is a phenotype with particular interest, I also define 6

binary composite phenotypes related to the existence and type of MC as below. Again, all

the phenotypes were first truncnorm-converted.

• From JK’s reads (3 in total)

– Overall MC (binary): Whether there exists MC on any of the disc levels

– Upper MC (binary): Whether there exists MC on L1 to L3

– Lower MC (binary): Whether there exists MC on L4 or L5

• From DS’s reads (3 in total)

– Whether there exists MC

– Whether there exists type 1 MC

– Whether there exists type 2 MC

The summary statistics of the 6 binary composite MRI phenotypes are shown in Table 2.8.

We could observe that MC generally worsened at lower disc levels, and type 2 MC was

slightly more prevalent than type 1 MC. Only a small proportion (< 21%) of individuals

suffered from MC in the studied population. Note that the composite phenotypes “Overall

MC (binary; JK)” and “Existence of MC (DS)” are almost identical to each other. However,

based on the data set of 1,228 samples read both by JK and MC, the phi coefficient6 between

the two phenotypes was estimated to be 0.6330, indicating the existence of a strong, yet not

perfect, correlation. The different focus and habits of the two clinicians when reading MRI

may be a confounding factor here.

Table 2.9 Summary statistics of the binary composite MRI phenotypes.

Composite phenotype Proportion of trues Proportion of falses # of non-NAs

Overall MC (binary; JK) 0.1529 0.8471 1373
Upper MC (binary; JK) 0.0291 0.9709 1375
Lower MC (binary; JK) 0.1347 0.8653 1373

Existence of MC (DS) 0.2043 0.7957 1713
Existence of type 1 MC (DS) 0.0226 0.9773 1635
Existence of type 2 MC (DS) 0.1437 0.8563 1635

6The phi coefficient measures the association between two binary variables x and y, which could be obtained
via estimating the Pearson correlation coefficient for x and y.
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To sum up, to portray the degree of LDD of a certain individual, I have defined altogether 31

composite phenotypes based on the raw MRI reads of clinicians. Among the 31, there are 25

continuous and 3 binary ones calculated using JK’s reads, as well as 3 binary ones related to

MC type from DS’s reads.

2.3.2 Pre-processing of metabolomic data

2.3.2.1 Data filtering

The purpose of conducting filtering on the metabolomic data (137 metabolomic measurements

for 814 individuals, as described in Section 2.2.5) is to identify and remove variables that are

unlikely to be of use when modeling the data. No phenotype information was used in the

filtering process; hence the result can be used with any downstream analysis.

From all the metabolomic measurements, 5% (7) with very small values (close to baseline or

detection limit) were detected using the sample median. Additionally, 5% of the metabolomic

measurements (7) with near-constant values throughout the experiment conditions (house-

keeping or homeostasis) were identified using the interquartile range (IQR).

The same 7 measurements (listed below) were found via the two different approaches, which

were filtered out and not used in the following analysis.

• Concentration of chylomicrons and extremely large very low density lipoprotein

(VLDL) particles

• Concentration of very large VLDL particles

• Concentration of large VLDL particles

• Concentration of medium VLDL particles

• Concentration of small VLDL particles

• Concentration of very small VLDL particles

• Concentration of intermediate density lipoprotein (IDL) particles

Table 2.10 lists all the 130 metabolomic measurements studied in this thesis, as well as their

molecular windows and abbreviations.
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Table 2.10 Metabolomic measurements studied in this thesis.

Abbreviation Molecular window Full name

Bis.DB LIPID Ratio of bisallylic groups to double bonds

Bis.FA LIPID Ratio of bisallylic groups to total fatty acids

CH2.DB LIPID Average number of methylene groups per a

double bond

CH2.in.FA LIPID Average number of methylene groups in a fatty

acid chain

DB.in.FA LIPID Average number of double bonds in a fatty

acid chain

DHA LIPID 22:6, docosahexaenoic acid (DHA)

Est.C LIPID Esterified cholesterol

FALen LIPID Description of average fatty acid chain length

(not actual carbon number)

FAw3 LIPID Omega-3 fatty acids

FAw3.FA LIPID Ratio of omega-3 fatty acids to total fatty acids

FAw6 LIPID Omega-6 and -7 fatty acids

FAw6.FA LIPID Ratio of omega-6/7 fatty acids to total fatty

acids

FAw79S LIPID Omega-9 and saturated fatty acids

FAw79S.FA LIPID Ratio of omega-9 and saturated fatty acids to

total fatty acids

Free.C LIPID Free cholesterol

LA LIPID 18:2, linoleic acid (LA)

MUFA LIPID Monounsaturated fatty acids

otPUFA LIPID Other polyunsaturated fatty acids than 18:2

PC LIPID Phosphatidylcholine (and other cholines)

SM LIPID Sphingomyelins

TG.PG LIPID Ratio of triglycerides to phosphoglycerides

Tot.FA LIPID Total fatty acids

TotPG LIPID Total phosphoglycerides

Alb LIPO Albumin

ApoA1 LIPO Apolipoprotein A-I (Lipido)

(Continued on next page)
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Table 2.10 Metabolomic measurements studied in this thesis (cont’d).

Abbreviation Molecular window Full name

ApoB LIPO Apolipoprotein B (Lipido)

ApoB.ApoA1 LIPO Apolipoprotein B by apolipoprotein A-I

(Lipido)

HDL.C LIPO Total cholesterol in HDL

HDL.D LIPO Mean diameter for HDL particles

HDL2.C LIPO Total cholesterol in HDL2 (Lipido)

HDL3.C LIPO Total cholesterol in HDL3 (Lipido)

IDL.C LIPO Total cholesterol in IDL

IDL.C.eFR LIPO Total cholesterol in IDL (Lipido)

IDL.FC LIPO Free cholesterol in IDL

IDL.L LIPO Total lipids in IDL

IDL.PL LIPO Phospholipids in IDL

IDL.TG LIPO Triglycerides in IDL

L.HDL.C LIPO Total cholesterol in large HDL

L.HDL.CE LIPO Cholesterol esters in large HDL

L.HDL.FC LIPO Free cholesterol in large HDL

L.HDL.L LIPO Total lipids in large HDL

L.HDL.P LIPO Concentration of large HDL particles

L.HDL.PL LIPO Phospholipids in large HDL

L.LDL.C LIPO Total cholesterol in large LDL

L.LDL.CE LIPO Cholesterol esters in large LDL

L.LDL.FC LIPO Free cholesterol in large LDL

L.LDL.L LIPO Total lipids in large LDL

L.LDL.P LIPO Concentration of large LDL particles

L.LDL.PL LIPO Phospholipids in large LDL

L.VLDL.C LIPO Total cholesterol in large VLDL

L.VLDL.CE LIPO Cholesterol esters in large VLDL

L.VLDL.FC LIPO Free cholesterol in large VLDL

L.VLDL.L LIPO Total lipids in large VLDL

L.VLDL.PL LIPO Phospholipids in large VLDL

L.VLDL.TG LIPO Triglycerides in large VLDL

LDL.C LIPO Total cholesterol in LDL

(Continued on next page)
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Table 2.10 Metabolomic measurements studied in this thesis (cont’d).

Abbreviation Molecular window Full name

LDL.C.eFR LIPO Total cholesterol in LDL (Lipido)

LDL.D LIPO Mean diameter for LDL particles (includes

IDL particles)

M.HDL.C LIPO Total cholesterol in medium HDL

M.HDL.CE LIPO Cholesterol esters in medium HDL

M.HDL.FC LIPO Free cholesterol in medium HDL

M.HDL.L LIPO Total lipids in medium HDL

M.HDL.P LIPO Concentration of medium HDL particles

M.HDL.PL LIPO Phospholipids in medium HDL

M.LDL.C LIPO Total cholesterol in medium LDL

M.LDL.CE LIPO Cholesterol esters in medium LDL

M.LDL.L LIPO Total lipids in medium LDL

M.LDL.P LIPO Concentration of medium LDL particles

M.LDL.PL LIPO Phospholipids in medium LDL

M.VLDL.C LIPO Total cholesterol in medium VLDL

M.VLDL.CE LIPO Cholesterol esters in medium VLDL

M.VLDL.FC LIPO Free cholesterol in medium VLDL

M.VLDL.L LIPO Total lipids in medium VLDL

M.VLDL.PL LIPO Phospholipids in medium VLDL

M.VLDL.TG LIPO Triglycerides in medium VLDL

S.HDL.L LIPO Total lipids in small HDL

S.HDL.P LIPO Concentration of small HDL particles

S.HDL.TG LIPO Triglycerides in small HDL

S.LDL.C LIPO Total cholesterol in small LDL

S.LDL.L LIPO Total lipids in small LDL

S.LDL.P LIPO Concentration of small LDL particles

S.VLDL.C LIPO Total cholesterol in small VLDL

S.VLDL.FC LIPO Free cholesterol in small VLDL

S.VLDL.L LIPO Total lipids in small VLDL

S.VLDL.PL LIPO Phospholipids in small VLDL

S.VLDL.TG LIPO Triglycerides in small VLDL

Serum.C LIPO Serum total cholesterol

(Continued on next page)
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Table 2.10 Metabolomic measurements studied in this thesis (cont’d).

Abbreviation Molecular window Full name

Serum.TG LIPO Serum total triglycerides

VLDL.D LIPO Mean diameter for VLDL particles

VLDL.TG LIPO Triglycerides in VLDL

VLDL.TG.eFR LIPO Triglycerides in VLDL (Lipido)

XL.HDL.C LIPO Total cholesterol in very large HDL

XL.HDL.CE LIPO Cholesterol esters in very large HDL

XL.HDL.FC LIPO Free cholesterol in very large HDL

XL.HDL.L LIPO Total lipids in very large HDL

XL.HDL.P LIPO Concentration of very large HDL particles

XL.HDL.PL LIPO Phospholipids in very large HDL

XL.HDL.TG LIPO Triglycerides in very large HDL

XL.VLDL.L LIPO Total lipids in very large VLDL

XL.VLDL.PL LIPO Phospholipids in very large VLDL

XL.VLDL.TG LIPO Triglycerides in very large VLDL

XS.VLDL.L LIPO Total lipids in very small VLDL

XS.VLDL.PL LIPO Phospholipids in very small VLDL

XS.VLDL.TG LIPO Triglycerides in very small VLDL

XXL.VLDL.L LIPO Total lipids in chylomicrons and extremely

large VLDL

XXL.VLDL.PL LIPO Phospholipids in chylomicrons and extremely

large VLDL

XXL.VLDL.TG LIPO Triglycerides in chylomicrons and extremely

large VLDL

AcAce LMWM Acetoacetate

Ace LMWM Acetate

Ala LMWM Alanine

bOHBut LMWM 3-hydroxybutyrate

Cit LMWM Citrate

Crea LMWM Creatinine

Glc LMWM Glucose

Gln LMWM Glutamine

Glol LMWM Glycerol

(Continued on next page)
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Table 2.10 Metabolomic measurements studied in this thesis (cont’d).

Abbreviation Molecular window Full name

Gly LMWM Glycine

Gp LMWM Glycoproteins

His LMWM Histidine

Ile LMWM Isoleucine

Lac LMWM Lactate

Leu LMWM Leucine

MobCH LMWM Double bond protons of mobile lipids

MobCH2 LMWM Mobile lipids -CH2-

MobCH3 LMWM Mobile lipids -CH3

Phe LMWM Phenylalanine

Pyr LMWM Pyruvate

Tyr LMWM Tyrosine

Urea LMWM Urea

Val LMWM Valine

2.3.2.2 Data normalization

After data filtering, data normalization was performed on the metabolomic data using Metabo-

Analyst [Xia et al., 2012], an online server for metabolomic data analysis.

Sample-wise, the data was normalized by sum to adjust for differences among the samples.

Measurement-wise, auto-scaling7 was performed to make metabolomic measurements, which

are vastly different in terms of their magnitudes by nature, more comparable to one another.

The normalization results could be seen in Figures 2.7 and 2.8.

7Mean-centered and divided by the standard deviation. After auto-scaling, the data would approximately
have mean 0 and standard deviation 1.
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Fig. 2.7 Metabolomic data normalization results (measurement view). The boxplots only
show 50 measurements due to space limitation; the density plots are based on all data.
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Fig. 2.8 Metabolomic data normalization results (sample view). The boxplots only show 50
measurements due to space limitation; whereas the density plots are based on all data.
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2.3.2.3 Dimensionality reduction on metabolites

In data analysis, as the number of variables grows, so does the volume of the space and the

available data would become “sparser”. Consequently, the amount of data needed to support

the statistical reliability of a result would increase8. Indeed, some problems will become

intractable when the dimensionality of the data is too high – this is generally referred to as

the curse of dimensionality.

Since there are 130 metabolomic measurements in the studied data set, any further analysis

could suffer from this problem. Performing dimensionality reduction on metabolites could

both help resolve this issue and identify new meaningful underlying variables.

In order to reduce the dimensionality of our data set, hierarchical clustering of metabolomic

measurements was performed. Complete linkage was used as the agglomeration method to

avoid chaining [Wilks, 2011] and the distance measure was set to be Kendall’s τ [Kendall,

1938]. For two vectors x and y, Kendall’s τ is defined as:

τ = ∑
i, j

Ki, j(x,y) (2.7)

where

Ki, j(x,y) =

0 if xi,x j in same order as yi,y j

1 otherwise

The reason for selecting Kendall’s τ as the distance measure is two-fold. Firstly, the Pearson

correlation coefficient9 only depicts a linear relationship between two variables, whereas

rank-based measures could capture all types of monotonic relationship. Secondly, when

compared with other rank-based distances like Spearman’s ρ , Kendall’s τ benefits from

having more interpretable and reliable confidence intervals [Newson, 2002].

As shown in Figure 2.9, the resulting dendrogram was cut into subtrees via dynamic tree

cutting [Langfelder et al., 2007] with a cut-off of τ = 0.2. Compared with cutting the tree

at a fixed height, the dynamic tree cut algorithm benefits from being able to identify nested

clusters [Langfelder et al., 2007]. In this study, the clusters were built bottom-up. The

minimum cluster size was set to be 2 and the relative sensitivity to cluster splitting was

controlled at a high level, producing a large number of clusters separated by small gaps.

8As a matter of fact, this amount increases exponentially with dimensionality [Donoho et al., 2000].
9Distance measures could be based on correlations, e.g. 1−|corr(x,y)|.
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Each resulting subtree corresponded to one new metabolomic feature – either itself (if the

subtree consisted of one metabolomic measurement) or the average of all the measurements

in that subtree. In total, 66 metabolomic features (listed in Table 2.11) were defined, among

them 35 composite and 31 single. The dimensionality of our metabolomic data was thus

vastly decreased (by almost 50%). These metabolomic features defined via hierarchical

clustering would be used in Section 5.2.4.

Table 2.11 Metabolomic features defined via hierarchical clustering.

Metabolomic feature Metabolomic measurement(s)

gr1 Total lipids / Free cholesterol / Phospholipids in large LDL;

Concentration of large LDL particles; Total cholesterol in LDL

(Lipido)

gr2 Total lipids / Free cholesterol / Phospholipids / Triglycerides in

medium VLDL; Triglycerides in VLDL

gr3 Total lipids / Total cholesterol / Free cholesterol / Phospholipids

in small VLDL; Triglycerides in very small VLDL

gr4 Total lipids / Phospholipids in medium LDL; Concentration of

medium LDL particles; Total cholesterol in LDL

gr5 Total lipids / Free cholesterol / Phospholipids in medium HDL;

Concentration of medium HDL particles

gr6 Total lipids / Free cholesterol / Phospholipids in very large HDL;

Concentration of very large HDL particles

gr7 Total lipids / Phospholipids / Triglycerides in very large VLDL;

Free cholesterol in large VLDL

gr8 Mean diameter for LDL particles (includes IDL particles); Mean

diameter for HDL particles; Average number of methylene groups

in a fatty acid chain; Description of average fatty acid chain length

(not actual carbon number)

gr9 Total cholesterol in HDL / HDL2 (Lipido); Apolipoprotein A-I

(Lipido)

gr10 Phospholipids in large HDL, Total lipids in large HDL, Concen-

tration of large HDL particles

gr11 Total cholesterol / Free cholesterol / Cholesterol esters in large

HDL

(Continued on next page)
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Table 2.11 Metabolomic features defined via hierarchical clustering (cont’d).

Metabolomic feature Metabolomic measurement(s)

gr12 Triglycerides in small VLDL; Serum total triglycerides; Triglyc-

erides in VLDL (Lipido)

gr13 Total lipids / Phospholipids / Triglycerides in large VLDL

gr14 Total lipids / Phospholipids / Triglycerides in chylomicrons and

extremely large VLDL

gr15 Total lipids / Total cholesterol in small LDL; Concentration of

small LDL particles

gr16 Average number of double bonds in a fatty acid chain; Ratio of

bisallylic groups to double bonds; Ratio of bisallylic groups to

total fatty acids

gr17 Total lipids / Phospholipids in very small VLDL; Triglycerides

in IDL

gr18 Omega-3 fatty acids; Other polyunsaturated fatty acids than 18:2,

22:6; docosahexaenoic acid (DHA)

gr19 Total cholesterol / Cholesterol esters in medium HDL

gr20 Total cholesterol / Cholesterol esters in large LDL

gr21 Total cholesterol / Cholesterol esters in medium LDL

gr22 Total cholesterol / Cholesterol esters in very large HDL

gr23 Total cholesterol / Cholesterol esters in large VLDL

gr24 Serum total cholesterol; Esterified cholesterol

gr25 Total cholesterol / Cholesterol esters in medium VLDL

gr26 Total lipids / Total cholesterol in IDL

gr27 Total lipids in small HDL; Concentration of small HDL particles

gr28 Free cholesterol / Phospholipids in IDL

gr29 Total cholesterol in IDL (Lipido); Apolipoprotein B (Lipido)

gr30 Total phosphoglycerides; Phosphatidylcholine (and other

cholines)

gr31 Omega-9 and saturated fatty acids; Total fatty acids

gr32 Omega-6 and -7 fatty acids; 18:2, linoleic acid (LA)

gr33 Mobile lipids -CH3; Double bond protons of mobile lipids

gr34 Mobile lipids -CH2-; Monounsaturated fatty acids

gr35 Leucine; Valine

(Continued on next page)
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Table 2.11 Metabolomic features defined via hierarchical clustering (cont’d).

Metabolomic feature Metabolomic measurement(s)

AcAce Acetoacetate

Ace Acetate

Ala Alanine

Alb Albumin

ApoB.ApoA1 Apolipoprotein B by apolipoprotein A-I (Lipido)

bOHBut 3-hydroxybutyrate

CH2.DB Ave no. of CH2 per a double bond

Cit Citrate

Crea Creatinine

FAw3.FA Ratio of omega-3 fatty acids to total fatty acids

FAw6.FA Ratio of omega-6/7 fatty acids to total fatty acids

FAw79S.FA Ratio of omega-9 and saturated fatty acids to total fatty acids

Free.C Free cholesterol

Glc Glucose

Gln Glutamine

Glol Glycerol

Gly Glycine

Gp Glycoproteins

HDL3.C Total cholesterol in HDL3 (Lipido)

His Histidine

Ile Isoleucine

Lac Lactate

Phe Phenylalanine

Pyr Pyruvate

S.HDL.TG Triglycerides in small HDL

SM Sphingomyelins

TG.PG Ratio of triglycerides to phosphoglycerides

Tyr Tyrosine

Urea Urea

VLDL.D Mean diameter for VLDL particles

XL.HDL.TG Triglycerides in very large HDL



2.3 Data pre-processing 63

Fi
g.

2.
9

D
en

dr
og

ra
m

cu
tv

ia
dy

na
m

ic
tr

ee
cu

tti
ng

.T
he

bl
ac

k
br

an
ch

es
ar

e
“s

ub
tr

ee
s”

co
nt

ai
ni

ng
on

ly
on

e
m

et
ab

ol
om

ic
m

ea
su

re
m

en
t,

w
he

re
as

th
e

co
lo

re
d

br
an

ch
es

in
di

ca
te

su
bt

re
es

cl
us

te
ri

ng
≥

2
m

et
ab

ol
om

ic
m

ea
su

re
m

en
ts

.



64 Data collection and pre-processing

2.4 Summary of integrated data

2.4.1 Basic description and sample sizes

The sample sizes of various types of data of the cohort are shown in Table 2.12. In this thesis,

I consider altogether 40 phenotypes (c.f. Table 2.13) and only use the complete observations

(e.g. for exploratory analysis of metabolomic data, I consider the 757) for analysis.

Table 2.12 Sample sizes of different types of data in the population cohort.

Data type No. of observations No. of complete observations

GWAS (before quality control) 2,482 /
Metabolomic 814 757

Phenotypic (composite scores – JK) 1,416 1,366 to 1,416
Phenotypic (composite scores – DS) 1,713 1,635 to 1,713

Table 2.13 Categories of phenotypes studied in this thesis.

Type Count Details

Basic 4 Height, weight, BMI, amount of cigarette smoking
Clinical 5 Lower back pain (binary), sciatica (binary), Oswestry disbility

total score (continuous), VAS score on the test day (continuous)
and severest VAS score ever experienced (continuous)

MRI 31 31 composite phenotypes (25 continuous and 3 binary from JK’s
reads; 3 binary related to modic change types from DS’s reads)

The number of available matched samples upon data integration is demonstrated in Figure

2.10. Here data set I and data set II correspond to “Genotype data I” and “Genotype data

II” in Figure 1.16. The studies deliberately use non-overlapping data sets to avoid possible

over-fitting incurred by recycling data in “training” and “testing” phases.

The size of data set II depends on the studied phenotype. When taking the intersect between

GWAS data and different phenotypes, the size of data set II is, respectively – basic phenotypes:

1,214; clinical phenotypes: 795; composite MRI phenotypes (JK): 750 to 769; composite

MRI phenotypes (DS): 632.
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Fig. 2.10 Venn diagram showing the number of matched samples in the integrated data. Note
that the areas of the ovals are not proportional to the corresponding sample sizes.

2.4.2 Descriptive statistics

The age and sex distributions of data set I are visualized in Figure 2.11. It could be observed

that there were more females (61.47%) in the data set. Moreover, the data set mainly

consisted of middle-aged and elderly people.

Since data set II varies with the phenotype of interest, we select one particular phenotype,

namely overall LDD severity, for illustrating the age and sex distributions. The sample size of

data set II for overall LDD severity was 751, and its age and sex distributions are visualized

in Figure 2.12. It could be seen that again, there were relatively more females (60.59%) and

people aged from 45 to 55 in the data set. The distributions were quite similar to Figure 2.11,

except that the age distribution of data set II (overall LDD severity) was more skewed to the

left, as well as had a slightly larger range and variance.
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(a) Sex distribution of data set I. (b) Age distribution of data set I.

Fig. 2.11 Age and sex distributions of data set I.

(a) Sex distribution of data set II
(overall LDD severity).

(b) Age distribution of data set II (overall LDD
severity).

Fig. 2.12 Age and sex distributions of data set II (overall LDD severity).
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Exploratory analysis of the serum
metabolome and its phenotypic
associations

3.1 Introduction

Low back pain (LBP), as a major cause of disability, is one of the most common global

health problems [Kaplan et al., 2013]. LBP is often caused by lumbar disc degeneration

(LDD) [Luoma et al., 2000], which could be evaluated by radiographic observations through

magnetic resonance imaging (MRI) [M. A. Adams and Roughley, 2006]. Nevertheless,

these MRI observations, as diagnostics for LBP/LDD, are prone to human error and may be

insufficient in detecting variations of biological systems [Zenker et al., 2007]. Therefore, one

of the urgent needs in LBP research is the identification of novel biomarkers for LDD, which

could aid personalized diagnosis and treatment of LBP.

Previous genome-wide association studies (GWAS) have identified various genes associated

with LDD [Eskola et al., 2012]. However, the genetic approach does not take into considera-

tion the complex dynamics of the patient’s biological environment, which limits its usage

in personalized medicine [Nicholson and Wilson, 2003]. Metabolomics, on the other hand,

studies an individual’s metabolome at a given time and proves to be more useful in real-time

diagnosis [Nicholson and Wilson, 2003].
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Proton NMR metabolomics is an efficient technique to systematically quantify an individual’s

metabolome and gain molecular information regarding a variety of metabolites in different

biofluids, for instance, serum [Mäkinen et al., 2008; Beckonert et al., 2003; Tang et al.,

2004]. This chapter focuses on studying the direct association between serum 1H NMR

spectroscopy data and LDD related phenotypes. Additionally, self-organizing map (SOM)

analysis is carried out to gain insight into the metabolomic continuum underlying LDD and

other phenotypes.

3.2 Materials and methods

3.2.1 Study sample

As described in Section 2.2.5, the serum samples of 814 individuals were obtained for the

application of 1H NMR spectroscopy. For each individual, 137 metabolomic measurements

were recorded, which belonged to one of the three molecular windows – lipoprotein lipids

(LIPO), low-molecular-weight metabolites (LMWM) and lipid extracts (LIPID).

The metabolomic data set next underwent data filtering and normalization (c.f. Section 2.3.2)

to reduce noise and increase the robustness of consequent analyses. After data pre-processing,

the data set included 130 metabolomic measurements (c.f. Table 2.10) for 757 individuals.

This study also utilizes the composite LDD phenotypes defined in Section 2.3.1.3 based

on the MRI reads of two experienced physicians, Dr. Jaro Karppinen (JK) and Dr. Dino

Samartzis (DS). Among the 757 samples with metabolomic measurements, the MRI scans of

427 individuals were read by JK and those of 526 people were read by DS.

3.2.2 Correlation analysis

To assess the strength of the relationship between metabolomic measurements and LDD, the

correlation between every metabolomic measurement and each of the 31 composite LDD

phenotypes defined in Section 2.3.1.3 was calculated.

For each of the 25 continuous composite LDD phenotypes, the correlation between every

metabolomic measurement and the LDD phenotype was calculated using Pearson’s formula.
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A two-sided test was also conducted to determine whether the correlation is significantly

different from 0 (i.e. there exists a significant linear correlation).

For each of the 6 binary composite LDD phenotypes, the point biserial correlation (rpb)

[Olsson et al., 1982] was calculated instead. rpb is a special case of Pearson’s correlation

coefficient measuring the relationship between one continuous variable X and one binary

variable Y . Assume that the binary variable Y has two values 0 and 1. The data set could

then be divided into two groups, Y = 0 and Y = 1. The formula for rpb is:

rpb =
µ1 −µ0

Sn

√
n1n0

n2 (3.1)

where µi is the mean of X in the group with Y = i, ni is the number of samples in the group

with Y = i, n is the overall sample size, and Sn is the standard deviation (Equation 3.2).

Sn =

√
1
n

n

∑
i=1

(Xi − X̄)2 (3.2)

Again, two-sided tests were performed to evaluate whether the calculated point biserial

correlations significantly deviate from 0.

3.2.2.1 Controlling for multiple testing

Since this study has calculated 130×31 = 4,030 correlations and hence performed 4,030

statistical tests, the issue of multiple testing arose. For example, if I choose p-value = 0.05

as the significance threshold, the probability of observing at least one significant result due

to chance is 1− (1−0.05)4,030 ≈ 1.

Bonferroni correction is probably the easiest way to circumvent the multiple testing problem.

It sets the p-value significance cut-off at α

n , where α is the significance level and n is the

number of tests. This approach is widely adopted in GWAS studies, where as a rule of thumb,

a p-value of 5× 10−8 (equivalent to a threshold of α = 0.05 Bonferroni-corrected for 1

million independent variants) is set as the threshold for genome-wide significance. However,

Bonferroni correction may lead to a high probability of type II errors1. Therefore, as a less

1A type II error occurs if we do not reject the null hypothesis (H0) when it is false.



70 Exploratory analysis of the serum metabolome and its phenotypic associations

conservative alternative to Bonferroni-type adjustments, false discovery rate (FDR) control2

is often recommended in health studies [Glickman et al., 2014].

In my study, the p-values Pi (i = 1, . . . ,4,030) were adjusted using the FDR approach, and

the FDR was controlled at level α = 0.1 through the Benjamini-Hochberg (B-H) procedure

[Hochberg and Benjamini, 1990]:

1. Find the largest k such that P(k) ≤ 0.1 k
m , where m = 4,030 is the total number of

hypotheses tested.

2. Reject the null hypothesis (i.e. correlation = 0) for all H(k) for i = 1, . . . ,k.

Note that the FDR threshold α = 0.1 means if there are altogether n significant adjusted

p-values (q-values) at 0.1 cut-off, the number of expected falses among these findings would

be 0.1n.

Since there existed heterogeneity among the MRI phenotypes, the stratified FDR approach

would perform better than aggregating all the tests [L. Sun et al., 2006]. Therefore, instead

of lumping all 4,030 p-values, the B-H procedure was carried out stratified by phenotype

(i.e. 31 strata, 130 tests in each stratum).

3.2.3 Self-organizing map analysis

3.2.3.1 A brief introduction to self-organizing maps

Self-organizing map (SOM) is a type of neural network (NN) trained using unsupervised

learning to represent multidimensional data in much lower dimensional spaces (often two;

hence called a map) [Kohonen, 1998]. Since metabolomic data is of high dimensions

by nature, SOMs are widely used in its analysis and visualization [Mäkinen et al., 2008;

Beckonert et al., 2003; Xia et al., 2012].

Figure 3.1 illustrates a typical two-dimensional SOM. It consists of an input layer and a two

dimensional “lattice” of neurons, each of which fully connected to the input layer. Each

neuron has a topological position in the lattice and contains a vector of weights of the same

dimension as the input vectors.

2A type I error occurs if we reject the null hypothesis (H0) when it is true. The FDR is defined as the
expected proportion of “false discoveries” among all discoveries. It conceptualizes the rate of type I errors
when conducting multiple hypothesis tests.
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Fig. 3.1 Illustration of NNs and SOMs. Instead of having multiple hidden layers as in a
typical NN, SOM feeds the input layer to a “lattice” of neurons. Note that the lines connecting
the neurons in the lattice represent adjacency – there are no lateral connections between
nodes within the lattice.

As opposed to other dimensional reduction methods (e.g. multidimensional scaling) which

focus on maintaining the overall dissimilarity structure, SOMs emphasize localized similarity,

i.e. in a trained SOM, on average, neighboring nodes have more similar weights to each other

than those from the opposite sides of the map [Kohonen, 1998].

The training process of SOMs occurs in several steps and over many iterations:

1. Randomly initialize the weights.

2. Choose one training example at random and feed it to the lattice.

3. Find the best matching unit (BMU).

4. Determine the BMU’s neighborhood.

5. Each neighboring node’s weights are adjusted to be closer to the input vector. The

closer a node is to the BMU, the more its weights get altered.

6. Repeat steps 2 to 5 n times. In each iteration, the size of the neighborhood used in

steps 4 and 5 decreases.
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3.2.3.2 Fitting a self-organizing map to metabolomic data

In this study, the training examples are the 757 samples in the metabolomic data set. A rule

of thumb for choosing the SOM size is to have 5
√

n grid nodes in total, where n is the sample

size [Vesanto and Alhoniemi, 2000]. In my case, the recommended SOM size would be

5×
√

757 ≈ 138 nodes. It has also been found that non-symmetrical SOMs have fewer edge

effects3 [Kohonen, 1998]. Therefore, I chose a 9×15 = 135 hexagonal sheet of map units

for the analysis (on average, 5.6 samples per node).

The R package “kohonen” [Wehrens and Buydens, 2007] was used to fit a SOM to the

metabolomic data. To start with a globally optimal embedding, the SOM was first initialized

with the space spanned by the first two eigenvectors attained from performing PCA on the

metabolomic data [Wittek et al., 2013]. During training, the whole data set was presented to

the map 1,000 times, and the learning rate linearly decreased from 0.05 to 0.01. A Gaussian

neighborhood was selected. The initial neighborhood4 covered two-thirds of the map and

decreased linearly in each iteration so that after 33 iterations, only the BMU was considered

– we no longer adjusted the weights of neighboring neurons and the algorithm essentially

became k-means.

Each neuron in the trained SOM represents a “metabolomic” neighborhood, and the individ-

uals assigned to the same neuron share similar metabolomic characteristics. In the trained

map, any two neighbors would, on average, have more similar metabolomic spectra than two

randomly picked samples.

3.2.3.3 Quality evaluation of the fitted self-organizing map

The quality of the fitted SOM was evaluated using the map convergence index, which is

defined to be the mean of the map’s topographic accuracy and embedding accuracy [Hamel,

2016].

A fitted SOM’s topographic accuracy measures how continuous it is. For training data

{x1, . . . ,xn}, if the best matching and the second best matching units of xi are adjacent, we

declare local continuity; if not, there exists a local discontinuity (or a local topographic error)

[Kiviluoto, 1996]. The entire map’s topographic error is the total number of local topographic

3With edge effects, the training examples tend to be assigned to nodes clustered around edges of the map,
leaving many empty neurons. This should be avoided [Vesanto and Alhoniemi, 2000].

4One of the parameters used in steps 4 and 5 of the SOM training algorithm, presented in Section 3.2.3.1.
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errors divided by n [Kiviluoto, 1996]; the topographic accuracy is next defined as 1 minus

the topographic error [Hamel, 2016].

When a SOM is completely embedded, there is no significant difference between the pop-

ulation of training samples and that of neurons in the map, i.e. the training data could be

effectively represented by neurons in the SOM [Hamel and Ott, 2012; Hamel, 2016]. In

my study, the embedding accuracy was calculated through the Kolmogorov–Smirnov test

[Kolmogorov, 1933; Smirnov, 1948].

3.2.3.4 Coloring the fitted self-organizing map using phenotypic data

After fitting the SOM, the map was colored according to the phenotypic properties (i.e. the

40 phenotypes listed in Table 2.13) of different parts of the SOM. For each phenotype, the

map was colored through the following steps:

1. Match phenotype and metabolomic data by sample ID.

2. For each node in the fitted SOM,

• Gather all the samples assigned to it.

• The “node statistic” NodeStat is calculated.

– If the phenotype is continuous, calculate the mean.

– If the phenotype is binary (with/without a condition), calculate the proportion

of samples with the phenotype.

3. Calculate k sample quantiles of the node statistics, where k = number of colors in the

sequential palette used.

4. Assign each node the color corresponding to the ith sample quantile that is closest to

NodeStat of that node.

Recall that in the trained SOM, each node has a characteristic metabolomic profile. The

phenotypic colorings could visualize the association between phenotypes and different

underlying metabolomic patterns.
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3.2.3.5 Statistical significance of self-organizing map colorings

To verify the statistical significance of one particular SOM coloring, we need to estimate the

regional variability of the coloring and test if this “bumpiness” is significantly larger than

that solely resulting from chance.

The bumpiness of the coloring pattern, or the “map statistic” MapStat, could be defined as:

MapStat =
135

∑
i=1

[NodeStati −mean(NodeStat)]2 (3.3)

where 135 is the total number of nodes in the SOM.

The significance of the observed MapStat could be checked via permutation testing:

1. Shuffle the phenotype used for coloring for all the people with both phenotypic and

metabolomic data. Now we have a pseudo-phenotype.

2. Match the pseudo-phenotype and metabolomic data by sample ID.

3. Calculate PseudoNodeStati (i = 1, . . . ,135) for the integrated pseudo-data. NodeStat

is defined previously in Section 3.2.3.4.

4. Calculate PseudoMapStat for the integrated pseudo-data using Equation 3.3.

5. Repeat 1 to 4 n times. Now we have n PseudoMapStat.

The p-value from permutation testing is then asymptotically:

p-value =
1
n

n

∑
j=1

1ObservedMapStat≤PseudoMapStat j (3.4)

where 1 is the indicator function:

1<condition> =

0 if <condition> is false

1 if <condition> is true

Equation 3.4 is an approximation to the probability of attaining the observed MapStat (or

a more extreme value) from the random distribution. As n increases, the approximation is

closer to the truth. In this study, n was set to be 10,000.
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Next, to control for multiple testing, the 40 p-values (regarding the 40 SOM colorings – one

for each phenotype) were adjusted using the B-H FDR procedure (c.f. Section 3.2.2.1). The

p-values were stratified based on whether the phenotype is directly based on LDD/LBP5.

If for a phenotype, the adjusted p-value of its coloring is less than 0.1, significance of the

association between the phenotype and the underlying metabolomic continuum is declared.

3.3 Results

3.3.1 Correlation analysis

By performing 4,030 correlation tests between 130 metabolomic measurements and 31 com-

posite LDD phenotypes (defined in Section 2.3.1.3), 210 significantly correlated metabolomic-

phenotypic pairs were identified6.

Table 3.1 shows the significant results from the analysis. A vast majority of the significant

correlations (203 in total) identified regards modic change (MC). The results are also visual-

ized in Figure 3.2 utilizing the R package “corrplot” [T. Wei and Simko, 2017]. From the

correlation plot, we could observe that type 1 MC tends to be negatively correlated with

clusters of metabolomic measurements related to chylomicrons and large VLDL. It also

correlates positively with clusters of large HDL related metabolomic measurements. On the

contrary, upper MC and type 2 MC tend to have a negative correlation with clusters of large

HDL related metabolomic measurements.

Additionally, the developmental score was found to be positively correlated with acetate with

a q-value of 0.0279. The other two LDD phenotypes significantly correlated with certain

metabolomic measurements (acetate and LDL related) both concerned the upper disc levels

(L1, L2, and L3), which are also more developmental in nature compared with the lower ones.

It has been found that acetate could function as an epigenetic metabolite to enhance lipid

synthesis [Gao et al., 2016]. My results indicate that LDD and lipid metabolism possibly

have shared genetic components.

5There were two strata – (1) weight, height, BMI and smoking (not directly based on LDD/LBP); and (2)
the other 36 phenotypes.

6This study declares findings with q-value < 0.1 as significant. Therefore, among the 210, the number of
expected false positives was 210×0.1 = 21.



76 Exploratory analysis of the serum metabolome and its phenotypic associations

Table 3.1 Significant correlations between LDD phenotypes and metabolomic measurements.

Phenotype Metabolomic measurement Correlation Adjusted p-value

Developmental score Ace 0.1768 0.0279

Upper LDD severity Ace 0.1536 0.0621

Upper LDD severity S.LDL.P 0.1615 0.0555

Upper LDD severity S.LDL.C 0.1446 0.0879

Upper LDD severity S.LDL.L 0.1606 0.0555

Upper SS S.LDL.P 0.1593 0.0852

Upper SS S.LDL.L 0.1540 0.0852

Overall MC (binary) HDL2.C -0.0553 0.0402

Overall MC (binary) L.HDL.FC -0.0630 0.0803

Overall MC (binary) XL.HDL.PL -0.0916 0.0115

Overall MC (binary) XL.HDL.P -0.0720 0.0803

Overall MC (binary) Alb -0.0118 0.0043

Overall MC (binary) Ace 0.0239 0.0043

Overall MC (binary) bOHBut -0.1212 0.0000

Overall MC (binary) AcAce -0.0460 0.0000

Overall MC (binary) MobCH2 0.0705 0.0264

Overall MC (binary) L.VLDL.TG 0.0349 0.0203

Overall MC (binary) XXL.VLDL.PL 0.1430 0.0005

Overall MC (binary) XXL.VLDL.L 0.1219 0.0012

Overall MC (binary) XXL.VLDL.TG 0.1047 0.0000

Overall MC (binary) XL.VLDL.PL 0.1215 0.0055

Overall MC (binary) L.VLDL.CE 0.0948 0.0851

Overall MC (binary) XL.VLDL.TG 0.0775 0.0115

Overall MC (binary) XL.VLDL.L 0.0935 0.0029

Overall MC (binary) Glc -0.0243 0.0000

Overall MC (binary) Lac -0.0154 0.0000

Overall MC (binary) Pyr 0.1924 0.0115

Overall MC (binary) Crea -0.0714 0.0029

Overall MC (binary) Leu 0.0868 0.0117

Overall MC (binary) FAw3 0.0550 0.0180

Overall MC (binary) DHA -0.0043 0.0436

(Continued on next page)
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Table 3.1 (cont’d).

Phenotype Metabolomic measurement Correlation Adjusted p-value

Upper MC (binary) HDL2.C -0.0752 0.0469

Upper MC (binary) L.HDL.FC -0.1178 0.0865

Upper MC (binary) L.HDL.CE -0.1822 0.0579

Upper MC (binary) XL.HDL.PL -0.1346 0.0445

Upper MC (binary) XL.HDL.FC -0.0853 0.0889

Upper MC (binary) XL.HDL.P -0.1106 0.0889

Upper MC (binary) Alb 0.0135 0.0005

Upper MC (binary) Ace 0.1608 0.0055

Upper MC (binary) bOHBut -0.3455 0.0000

Upper MC (binary) AcAce -0.2133 0.0000

Upper MC (binary) MobCH2 -0.0427 0.0113

Upper MC (binary) L.VLDL.TG -0.0323 0.0092

Upper MC (binary) L.VLDL.L -0.0118 0.0640

Upper MC (binary) M.VLDL.TG -0.0533 0.0815

Upper MC (binary) XXL.VLDL.PL 0.0890 0.0011

Upper MC (binary) XXL.VLDL.L 0.0577 0.0005

Upper MC (binary) XXL.VLDL.TG 0.0374 0.0000

Upper MC (binary) XL.VLDL.PL 0.0590 0.0050

Upper MC (binary) L.VLDL.C 0.0018 0.0640

Upper MC (binary) L.VLDL.FC 0.0043 0.0257

Upper MC (binary) XL.VLDL.TG 0.0065 0.0050

Upper MC (binary) XL.VLDL.L 0.0215 0.0011

Upper MC (binary) Glc 0.0243 0.0000

Upper MC (binary) Lac 0.0255 0.0000

Upper MC (binary) Pyr 0.1371 0.0257

Upper MC (binary) Crea 0.1150 0.0046

Upper MC (binary) Leu 0.2435 0.0243

Upper MC (binary) L.LDL.P 0.1317 0.0889

Upper MC (binary) M.HDL.C -0.0336 0.0563

Upper MC (binary) M.HDL.CE -0.0476 0.0128

Upper MC (binary) M.HDL.L -0.0097 0.0445

Upper MC (binary) M.HDL.P -0.0005 0.0413

(Continued on next page)
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Table 3.1 (cont’d).

Phenotype Metabolomic measurement Correlation Adjusted p-value

Upper MC (binary) FAw3.FA 0.0489 0.0640

Upper MC (binary) otPUFA 0.1543 0.0027

Upper MC (binary) FAw3 0.0254 0.0055

Upper MC (binary) DHA 0.0868 0.0221

Lower MC (binary) HDL2.C -0.0269 0.0328

Lower MC (binary) L.HDL.FC -0.0272 0.0513

Lower MC (binary) L.HDL.C -0.0214 0.0909

Lower MC (binary) XL.HDL.PL -0.0598 0.0110

Lower MC (binary) XL.HDL.P -0.0437 0.0705

Lower MC (binary) Alb -0.0263 0.0024

Lower MC (binary) Ace -0.0503 0.0047

Lower MC (binary) bOHBut -0.0744 0.0000

Lower MC (binary) AcAce -0.0113 0.0000

Lower MC (binary) FAw79S 0.0680 0.0964

Lower MC (binary) MobCH2 0.0811 0.0202

Lower MC (binary) L.VLDL.TG 0.0386 0.0202

Lower MC (binary) XXL.VLDL.PL 0.1273 0.0006

Lower MC (binary) XXL.VLDL.L 0.1125 0.0014

Lower MC (binary) XXL.VLDL.TG 0.0987 0.0000

Lower MC (binary) XL.VLDL.PL 0.1180 0.0043

Lower MC (binary) XL.VLDL.TG 0.0780 0.0135

Lower MC (binary) XL.VLDL.L 0.0932 0.0031

Lower MC (binary) Glc -0.0456 0.0000

Lower MC (binary) Lac -0.0358 0.0000

Lower MC (binary) Pyr 0.1741 0.0145

Lower MC (binary) Crea -0.1367 0.0043

Lower MC (binary) Leu 0.0106 0.0241

Lower MC (binary) S.LDL.P 0.0669 0.0328

Lower MC (binary) FAw3 0.0598 0.0241

Lower MC (binary) DHA -0.0223 0.0769

MC exists (DS read) HDL3.C 0.0031 0.0389

MC exists (DS read) L.HDL.L 0.0317 0.0890

(Continued on next page)
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Table 3.1 (cont’d).

Phenotype Metabolomic measurement Correlation Adjusted p-value

MC exists (DS read) L.HDL.FC 0.0273 0.0213

MC exists (DS read) L.HDL.C 0.0236 0.0308

MC exists (DS read) L.HDL.CE 0.0223 0.0710

MC exists (DS read) XL.HDL.C -0.0358 0.0378

MC exists (DS read) XL.HDL.PL -0.0187 0.0036

MC exists (DS read) XL.HDL.FC -0.0209 0.0768

MC exists (DS read) XL.HDL.L -0.0334 0.0077

MC exists (DS read) XL.HDL.P -0.0306 0.0036

MC exists (DS read) Alb 0.0341 0.0001

MC exists (DS read) Ace 0.0236 0.0001

MC exists (DS read) bOHBut -0.0823 0.0000

MC exists (DS read) AcAce -0.0643 0.0000

MC exists (DS read) MobCH -0.0361 0.0706

MC exists (DS read) FAw79S -0.0914 0.0532

MC exists (DS read) MobCH2 -0.0833 0.0028

MC exists (DS read) L.VLDL.PL -0.1265 0.0308

MC exists (DS read) L.VLDL.TG -0.1342 0.0026

MC exists (DS read) L.VLDL.L -0.1223 0.0659

MC exists (DS read) M.VLDL.TG -0.1147 0.0058

MC exists (DS read) XXL.VLDL.PL -0.0229 0.0000

MC exists (DS read) XXL.VLDL.L -0.0656 0.0000

MC exists (DS read) XXL.VLDL.TG -0.0901 0.0000

MC exists (DS read) XL.VLDL.PL -0.0889 0.0003

MC exists (DS read) L.VLDL.FC -0.0994 0.0061

MC exists (DS read) XL.VLDL.TG -0.1118 0.0005

MC exists (DS read) XL.VLDL.L -0.0990 0.0001

MC exists (DS read) Glc 0.0773 0.0000

MC exists (DS read) Lac 0.0034 0.0000

MC exists (DS read) Pyr 0.0403 0.0010

MC exists (DS read) Crea -0.0273 0.0064

MC exists (DS read) Leu -0.0129 0.0092

MC exists (DS read) FAw3.FA 0.0369 0.0035

(Continued on next page)
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Table 3.1 (cont’d).

Phenotype Metabolomic measurement Correlation Adjusted p-value

MC exists (DS read) otPUFA 0.0208 0.0233

MC exists (DS read) FAw3 -0.0178 0.0092

MC exists (DS read) DHA -0.0466 0.0092

Type 1 MC (DS read) HDL3.C 0.1679 0.0308

Type 1 MC (DS read) L.HDL.FC 0.2434 0.0229

Type 1 MC (DS read) L.HDL.C 0.2655 0.0138

Type 1 MC (DS read) L.HDL.CE 0.2720 0.0168

Type 1 MC (DS read) XL.HDL.C 0.1881 0.0091

Type 1 MC (DS read) XL.HDL.CE 0.1921 0.0309

Type 1 MC (DS read) XL.HDL.PL 0.2143 0.0014

Type 1 MC (DS read) XL.HDL.FC 0.2064 0.0091

Type 1 MC (DS read) XL.HDL.L 0.2097 0.0025

Type 1 MC (DS read) XL.HDL.P 0.2104 0.0007

Type 1 MC (DS read) Alb 0.0776 0.0007

Type 1 MC (DS read) CH2.DB 0.0977 0.0073

Type 1 MC (DS read) Ace 0.1741 0.0004

Type 1 MC (DS read) bOHBut 0.0271 0.0000

Type 1 MC (DS read) AcAce 0.0632 0.0000

Type 1 MC (DS read) S.VLDL.PL -0.2326 0.0361

Type 1 MC (DS read) S.VLDL.L -0.2435 0.0221

Type 1 MC (DS read) MobCH -0.1354 0.0495

Type 1 MC (DS read) FAw79S -0.1622 0.0702

Type 1 MC (DS read) MobCH2 -0.1979 0.0025

Type 1 MC (DS read) TG.PG -0.2014 0.0710

Type 1 MC (DS read) L.VLDL.PL -0.3028 0.0144

Type 1 MC (DS read) L.VLDL.TG -0.2868 0.0007

Type 1 MC (DS read) L.VLDL.L -0.2747 0.0663

Type 1 MC (DS read) M.VLDL.TG -0.2902 0.0075

Type 1 MC (DS read) M.VLDL.L -0.2886 0.0431

Type 1 MC (DS read) XXL.VLDL.PL -0.0773 0.0000

Type 1 MC (DS read) XXL.VLDL.L -0.0964 0.0000

Type 1 MC (DS read) XXL.VLDL.TG -0.1306 0.0000

(Continued on next page)
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Table 3.1 (cont’d).

Phenotype Metabolomic measurement Correlation Adjusted p-value

Type 1 MC (DS read) XL.VLDL.PL -0.1996 0.0008

Type 1 MC (DS read) L.VLDL.FC -0.2415 0.0075

Type 1 MC (DS read) XL.VLDL.TG -0.2162 0.0008

Type 1 MC (DS read) XL.VLDL.L -0.1959 0.0004

Type 1 MC (DS read) Glc -0.0156 0.0000

Type 1 MC (DS read) Glol 0.0878 0.0309

Type 1 MC (DS read) Lac -0.1750 0.0000

Type 1 MC (DS read) Pyr -0.0080 0.0079

Type 1 MC (DS read) Crea -0.1298 0.0055

Type 1 MC (DS read) Leu -0.2259 0.0166

Type 1 MC (DS read) FAw3.FA -0.0036 0.0092

Type 1 MC (DS read) otPUFA -0.0527 0.0020

Type 1 MC (DS read) FAw3 -0.1039 0.0091

Type 1 MC (DS read) DHA -0.0341 0.0037

Type 2 MC (DS read) HDL3.C -0.0598 0.0409

Type 2 MC (DS read) L.HDL.FC -0.0640 0.0542

Type 2 MC (DS read) L.HDL.C -0.0726 0.0606

Type 2 MC (DS read) L.HDL.CE -0.0752 0.0715

Type 2 MC (DS read) XL.HDL.C -0.1067 0.0567

Type 2 MC (DS read) XL.HDL.PL -0.1040 0.0052

Type 2 MC (DS read) XL.HDL.FC -0.0963 0.0542

Type 2 MC (DS read) XL.HDL.L -0.1150 0.0055

Type 2 MC (DS read) XL.HDL.P -0.1151 0.0024

Type 2 MC (DS read) Alb 0.0313 0.0005

Type 2 MC (DS read) CH2.DB -0.0205 0.0052

Type 2 MC (DS read) Ace -0.0080 0.0003

Type 2 MC (DS read) bOHBut -0.0674 0.0000

Type 2 MC (DS read) AcAce -0.0423 0.0000

Type 2 MC (DS read) MobCH -0.0009 0.0886

Type 2 MC (DS read) MobCH2 -0.0263 0.0032

Type 2 MC (DS read) L.VLDL.PL -0.0470 0.0660

Type 2 MC (DS read) L.VLDL.TG -0.0617 0.0010

(Continued on next page)
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Table 3.1 (cont’d).

Phenotype Metabolomic measurement Correlation Adjusted p-value

Type 2 MC (DS read) M.VLDL.TG -0.0461 0.0166

Type 2 MC (DS read) XXL.VLDL.PL 0.0431 0.0001

Type 2 MC (DS read) XXL.VLDL.L -0.0022 0.0001

Type 2 MC (DS read) XXL.VLDL.TG -0.0219 0.0000

Type 2 MC (DS read) XL.VLDL.PL -0.0095 0.0006

Type 2 MC (DS read) L.VLDL.FC -0.0245 0.0094

Type 2 MC (DS read) XL.VLDL.TG -0.0374 0.0005

Type 2 MC (DS read) XL.VLDL.L -0.0254 0.0002

Type 2 MC (DS read) Glc 0.1091 0.0000

Type 2 MC (DS read) Glol 0.0625 0.0542

Type 2 MC (DS read) Lac 0.0465 0.0000

Type 2 MC (DS read) Pyr 0.0836 0.0023

Type 2 MC (DS read) Crea 0.0168 0.0006

Type 2 MC (DS read) Leu 0.0744 0.0176

Type 2 MC (DS read) IDL.C -0.0182 0.0660

Type 2 MC (DS read) FAw3.FA 0.0361 0.0052

Type 2 MC (DS read) otPUFA 0.0274 0.0711

Type 2 MC (DS read) FAw3 0.0009 0.0059

Type 2 MC (DS read) DHA -0.0525 0.0020
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3.3.2 Self-organizing map analysis

As described in Section 3.2.3.2, a SOM was constructed from the 1H NMR data, reducing the

757 metabolomic spectra of different individuals into 9×15 = 135 representative spectral

models. Each of the characteristic metabolomic spectra was assigned to a unique hexagonal

unit in the SOM based on localized similarity, and the 757 samples were allocated to their

best-matching cells rather uniformly (c.f. Figure 3.3).

Fig. 3.3 Count plot of the fitted SOM. The number of samples falling into each cell ranges
from 1 to 9, with an average of 5.61 and a median of 6. Each cell is colored according to the
number of samples in it and the color scale on the left of the figure – 1 corresponds to light
yellow and 9 corresponds to red.

The topographic accuracy of the fitted map was estimated to be 0.94 with a 95% confidence

interval of (0.86,1), whereas its embedding accuracy was approximately 0.7462. Hence,

the estimated map convergence index was 0.84, implying a moderately good fit. Figure 3.4

shows the representative metabolomic profiles of each cell. It could be seen that people with

higher levels of VLDL/IDL/LDL related metabolomic measurements tend to reside on the

left side of the map, whereas the right part of the map (especially the bottom right corner)

contains individuals with higher levels of HDL related measurements.

Two statistical colorings have been found to be significant through permutation testing.

Weight (Figure 3.5) and BMI (Figure 3.6) both have an adjusted p-value of approximately

0.0448, indicating a significant association between them and the underlying metabolomic

continuum. We could observe from the plots that weight and BMI seem to be positively
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(negatively) correlated with VLDL/IDL/LDL (HDL) related metabolomic measurements. No

significant associations have been found for the LDD related phenotypes.
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Fig. 3.5 Statistical coloring of the weight of samples on the SOM of 1H NMR spectra. Map
units are colored according to the average weight of individuals allocated to it. Grey indicates
NA due to missing phenotypic data in that cell. p-value ≈ 0.0134; adjusted p-value ≈ 0.0448.

Fig. 3.6 Statistical coloring of the BMI of samples on the SOM of 1H NMR spectra. Map
units are colored according to the average BMI of individuals allocated to it. Grey indicates
NA due to missing phenotypic data in that cell. p-value ≈ 0.0224; adjusted p-value ≈ 0.0448.
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3.4 Discussion

3.4.1 Correlation analysis

Through correlation analysis based on a population cohort, the first study presented in this

chapter identified several significant associations between different metabolomic measure-

ments and LDD related phenotypes. By conducting a population-based study, external

validity7 was ensured [Szklo, 1998; Wijmenga and Zhernakova, 2018]. Additionally, the

LDD related phenotypes considered in this study were composite scores defined based on

truncated normal converted MRI reads. The composite scores could better characterize the

overall picture of an individual’s disc degeneration status. The fact that most of the defined

composite phenotypes were continuous (compared to the original MRI reads, which are

binary or ordinal) also helped the study gain more statistical power [Altman and Royston,

2006].

The study found acetate, an epigenetic metabolite enhancing lipid synthesis [Gao et al.,

2016], to be positively associated with the developmental component of LDD and upper LDD

severity. Additionally, signal intensity loss (measured in terms of Schneiderman’s score)

and general LDD severity of the upper disc levels had a significantly positive correlation

with small LDL related metabolites. These significant findings were all with respect to

developmental LDD phenotypes – this is a possible indicator of shared genetic components

between LDD and lipid metabolism.

Previous studies have also indicated that altered metabolism may contribute to LDD [Samartzis

et al., 2013b; Ranjani et al., 2014]. Specifically, the association between serum lipid levels

and disc herniation has been established in past research [Longo et al., 2011; Y. Zhang

et al., 2016]. However, the precise underlying mechanism remains unclear. It has been

hypothesized that dyslipidaemia8 induces LDD through atherosclerosis or inflammatory

pathways [Y. Zhang et al., 2016]. Further biological experiments need to be conducted to

test the validity of this hypothesis and better understand the relationship between LDD and

blood lipid levels.

My analysis also identified a variety of metabolites significantly associated with modic

change (MC). The results regarding type 1 and type 2 MC were different; for instance, type

7The applicability of results of the study to a defined population (in our case, southern Han Chinese).
8Dyslipidaemia means an abnormal amount of lipids in the blood.
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2 MC tended to be negatively associated with HDL related metabolites, whereas it was the

opposite for type 1 MC.

It is well-established that type 2 MC is related to fatty degeneration [De Roos et al., 1987;

Modic et al., 1988]. High amounts of oxidized LDLs (often accompanied by low HDL

levels) activate TLR2/4 (toll-like receptor 2/4), and chronic stimulation of TLRs could

facilitate fatty marrow conversion, inducing type 2 MC [Dudli et al., 2016]. Unfortunately,

the pathology of type 1 MC is still not well understood. My results may indicate a distinct

underlying metabolism of type 1 versus type 2 MC. Nevertheless, since in my data set,

the class distribution of type 1 MC is highly imbalanced (only 2.16% positive), the results

regarding type 1 MC may be biased. Future studies may benefit from a larger sample size (in

order to diminish the drawback of imbalanced data) or a case-control study design (so that

we have enough cases of type 1 MC). Besides, more biological research is needed to gain

more insight into the pathology of type 1 MC.

3.4.2 Self-organizing map analysis

From the SOM analysis, we could observe a strong association between an individual’s

metabolomic profile (especially in terms of lipid-related measurements) and his or her

weight/BMI. This is consistent with the current clinical knowledge [W. M. Miller et al.,

2005].

In my study, no supervised feature selection was performed before the SOM analysis. This

may lead to unsatisfactory predictive performance for clinical and LDD MRI phenotypes

[Mäkinen et al., 2008]. Nevertheless, I have decided to adhere to the current unsupervised

approach so that the fitted SOM is not methodologically dependent on any of the clinical

phenotypes and hence easier to generalize to the southern Chinese population. Supervised

models should be utilized in future research with disease risk prediction as the main purpose.

Unfortunately, no significant associations have been found for the LDD related phenotypes.

This is probably due to the limited sample size of our metabolomic data. What’s worse, the

distributions of LDD phenotypes were generally highly skewed. For instance, a rather small

proportion of people had modic changes, rendering a 0 average MC score for most of the

SOM cells. Therefore, I may not have enough statistical power to identify true significant

associations, if any. Upon collecting more metabolomic and LDD phenotypic data, it could be

expected that representative metabolomic profiles from the new fitted SOM could be utilized
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in personalized medicine as a high-throughput cost-effective alternative to a collection of

specific metabolomic measurements [Ala-Korpela, 2008; Lindon et al., 2006].



4

Genome-wide association study for
identification of single nucleotide
polymorphisms associated with
metabolomic measurements

4.1 Introduction

For a given biological sample, the metabolome refers to the complete set of chemicals

within it at a given time. Rapid advances in the field of metabolomics now enable us to

provide a “snapshot” of the human metabolome for cohorts with biological samples like

serum, measuring hundreds of metabolomic traits at the same time. This “snapshot” could

be read as a functional characterization of the metabolism and physiological state of the

human body [Gieger et al., 2008], and it is intuitive to perform genome-wide scans of genetic

biomarkers like single nucleotide polymorphisms (SNPs) for elements of this “snapshot”

through genome-wide association studies (GWAS).

Many studies have integrated genomic and metabolomic data in human cohorts and identified

a number of genetic loci associated with changes in metabolomic traits [Gieger et al., 2008;

Illig et al., 2010; Rhee et al., 2013; Kettunen et al., 2016]. Since many of these identified

genetic loci code enzymes or transport proteins directly affecting the disposition of a given

metabolite [Gieger et al., 2008; Suhre and Gieger, 2012], the genetic variants typically



92 GWAS for identification of SNPs associated with metabolomic measurements

display much larger effect sizes compared to findings in GWAS for complex diseases [Gieger

et al., 2008; Rhee et al., 2013]. The genetic biomarkers found could help us achieve a better

understanding of the genetic roots of metabolomic measurements [Rhee et al., 2013], as well

as the metabolomic context of different traits and conditions (e.g. lumbar disc degeneration)

[Kettunen et al., 2016].

In this chapter, I scan the whole genome for SNPs significantly associated with different

serum 1H NMR metabolomic measurements, annotating all the significant SNPs identified.

Following up the detected associations, meta-analysis is performed to increase power for

polygenic scoring of metabolomic traits, which would be covered in the next chapter.

4.2 Materials and methods

4.2.1 Study sample

The serum samples of 814 individuals were obtained for the application of 1H NMR spec-

troscopy, as described in Section 2.2.5. For each individual, we took 137 metabolomic

measurements, which belong to one of the three molecular windows – lipoprotein lipids

(LIPO), low-molecular-weight metabolites (LMWM) and lipid extracts (LIPID).

Next, the metabolomic data set underwent data filtering and normalization (c.f. Section 2.3.2)

to reduce noise and increase the robustness of consequent analyses. After data pre-processing,

the data set included 130 metabolomic measurements (c.f. Table 2.10) for 757 individuals.

Among the 757 subjects, 571 also had GWAS data. Procedures for genotyping are described

in Section 2.2.4.

4.2.2 Quality control

One thing about data analysis is that, your analysis results are only as good as (or, almost

always, slightly worse than) your data. Garbage in, garbage out (GIGO) – when you feed

the model with trash, all you receive in return is trash – the quality of output is partially

determined by the quality of the input (c.f. Figure 4.1). That is why the success of GWAS,

like that of any type of data analysis, depends on careful quality control (QC).
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Fig. 4.1 Illustration of the GIGO principle. If the input (model) is garbage, even when the
model (input) is perfect, which is unlikely in the real life, you would nevertheless end up
with garbage results.

A lot of factors could go wrong in GWAS. Samples may be mislabeled, DNA might be

contaminated, and genotyping is prone to error. Besides, the relatedness and underlying

population structure of individuals in the cohort could lead to biased results. Since the

numbers of SNPs and samples are generally quite big in GWAS, even if the error rate is

suppressed to very low, there could be a very large number of false positive and false negative

trait-variant associations. To ensure the accuracy of GWAS, both sample QC and variant QC

need to be conducted.

4.2.2.1 Sample quality control

To guarantee the quality of samples used in GWAS, we filtered out bad quality samples

with low SNP call rates, sample mislabeling, gender inconsistencies, sample contamination,

relatedness and diverse ethnicity based on the genotype data for all 2,482 individuals using

PLINK [Purcell et al., 2007], following the pipeline used in [Y. Li, 2016].

SNP call rate checking

If a sample has a low SNP call rate (i.e. a high missing rate of SNP genotypes), it may be of

poor quality or have undergone certain technical problems when genotyped. Therefore, such

samples should be excluded from subsequent analysis.
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We calculated the proportion of missing SNPs for each individual using PLINK [Purcell

et al., 2007] and plotted the SNP call rates (1− missingness) against their corresponding

cumulative frequency of samples. As shown in Figure 4.2, the scatterplot elbows at around a

97% call rate. Hence, we dropped the 23 samples with over 3% missingness.

Fig. 4.2 Plot of SNP call rates of all the samples. The graph turns roughly at call rate = 97%,
which is chosen to be the QC threshold.

Sample mislabeling and gender checking

An individual’s sex could be inferred based on his or her genotype. This inference could be

made by estimating the X chromosome inbreeding (homozygosity) coefficient (F), which

measures the difference between the observed and expected numbers of homozygous loci.

As shown in Figure 4.3, normal males have one X and one Y chromosome, while normal

females have two X chromosomes. Since males have only one X chromosome, they are

hemizygous for all sex-linked genes, making the observed homozygosity in males larger than

expected by chance. On the contrary, females have two X chromosomes (just like all other

autosomes), so the observed and expected homozygosity should be quite similar. Therefore,

I classified samples with F > 0.8 (high observed homozygosity) as males and individuals

with F < 0.2 (low observed homozygosity) as females using PLINK [Purcell et al., 2007]. If
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0.2 ≤ F ≤ 0.8, PLINK would conclude that the sample has ambiguous gender [Purcell et al.,

2007].

(a) Sex chromosomes of a normal
female (XX). Modified based on the
picture by [University of Toronto,
2014].

(b) Sex chromosomes of a nor-
mal male (XY). Modified based
on the picture by [University of
Toronto, 2014].

Fig. 4.3 Sex chromosomes of normal males and females.

Out of the 2,458 samples resulting from the previous step (SNP call rate QC), 43 individuals

have genetically determined genders (inferred by PLINK [Purcell et al., 2007]) that are

different from their “real” genders recorded in our database. Apart from those with gender

discrepancy, 95 mislabeled samples (with unidentifiable ID) were pinpointed by referring to

the phenotypic database. All the 138 (43+95) individuals were dropped from our genotype

data.

Heterozygosity and sample contamination checking

As mentioned in the previous section (gender checking), the inbreeding coefficient F is a

measure of the extent of homozygosity in chromosomes. Hence intuitively, we could quantify

the level of heterozygosity within samples by calculating F for only autosomal chromosomes

(chromosomes 1 to 22 for humans). An elevated level of heterozygosity (i.e. very low F)

may indicate cross-contamination of samples. On the other hand, if F is unusually high,

there may be an excess of homozygous genotypes, which could be due to degraded DNA

samples or inbred1 subjects.

In my study, all the SNPs on autosomal chromosomes were used to estimate F with PLINK

[Purcell et al., 2007]. 28 samples had F valued outside three standard deviations of the mean,
1Inbreeding means breeding between (close) relatives.
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which is quite unlikely according to the three-sigma rule of thumb2. These samples may be

contaminated or degraded, and were excluded from subsequent analysis.

Relatedness checking

One of the assumptions of GWAS is that all the samples for study are independent of each

other. Biologically related individuals are likely to have a higher proportion of shared DNA

sequences, and they may distort the overall distribution of allele frequencies, leading to

biased GWAS conclusions. In light of this, we need to ensure that the data set for GWAS

does not contain duplicated or genetically related people.

A common measure of relatedness (or duplication) between pairs of individuals is based on

identity by descent (IBD). To understand this concept, first, think about the origin of life.

Though how lives came into being is still a mystery, it is widely believed that all life today

evolved by common descent from a single primitive life form. If we fast forward to today

and only consider one of the current life forms – human beings, we could similarly conclude

that in a finite population, all the individuals are related if traced back long enough3.

If two people share certain nucleotide sequences in a DNA segment, this segment is identical

by state (IBS) in them. If additionally, this segment is inherited from a common ancestor

without recombination, the IBS segment is IBD in the individuals (c.f. Figure 4.4). Segments

of IBD could be broken up by recombination during meiosis; therefore, the expected length

of an IBD segment is related to the number of generations since the most recent common

ancestor at the locus of the segment. Hence, the genetic relationship between two individuals

could be tested based on the amount (both number and length) of IBD sharing. As long

as a large number of SNPs is available, we could calculate genome-wide IBD given IBS

information in a homogeneous sample [Purcell et al., 2007].

Prior to calculating IBD, we first applied LD pruning using a window size of 20,000 SNPs,

a step size of 2,000 SNPs and a 0.5 pairwise SNP-SNP correlation (R2) threshold4. LD

pruning is a common way to keep only the markers not in LD with each other and reduce

2If X is an observation from a N(µ,σ2) random variable, Pr(µ −3σ ≤ X ≤ µ +3σ)≈ 0.9973. Empirically,
we could treat 99.7% probability as near certainty. Note also that 1− 28

2320 ≈ 0.9879. If we perform a two-
proportions z-test between 0.9879 and 0.9973 with sample sizes both equal to 2320, we could conclude that the
two proportions are significantly different.

3Again, though I am an agnostic, I would like to say, it is a small world after all!
4This means we would (1) consider a window of 20,000 SNPs, (2) calculate LD between each pair of SNPs

in the window, (3) remove one of a pair of SNPs if LD > 0.5, (4) shift the window 2,000 SNPs forward and (5)
repeat steps 1 to 4.
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Fig. 4.4 IBD segments in a pedigree. We could see that the marked IBD segment in the two
youngest individuals is from the maternal grandfather of the girl, who is one of the most
recent common ancestors of the two individuals.

chromosomal artifacts’ influences. It also renders the IBD calculation less computationally

extensive.

Based on the pruned genotype data, IBD was calculated using PLINK [Purcell et al., 2007].

Let Z0, Z1 and Z2 denote the probabilities of having IBD = 0, 1 or 2 over the loci. For a

parent and his or her offspring, an ideal case would be (Z0,Z1,Z2) = (0,1,0), i.e. all loci

have one IBD allele. As another example, for ideal full siblings, (Z0,Z1,Z2) = (1
4 ,

1
2 ,

1
4), i.e.

25% of loci have no IBD alleles, 50% have one IBD allele and the rest 25% have two IBD

alleles.

The level of kinship could estimated by π̂ = Z2 + 0.5Z1. We could see that for both the

parent-offspring and full siblings cases, an ideal π̂ would be 0.5. Hence, a π̂ close to 0.5

indicates first degree relatives. Some approximate values of π̂ for other common relationships

could be found in Table 4.1.
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Table 4.1 Indications of the kinship coefficient π̂ .

Relationship Approximate value of π̂

Duplicated samples or monozygotic twins 1
First degree relatives 0.5

Second degree relatives 0.25
Third degree relatives 0.125
Completely unrelated 0

In our data set, we found 338 related or duplicated (π̂ < 0.1) samples falling into 159 groups.

Out of each group, we randomly kept one of the individuals, and the rest (179) were removed

from the data set.

Checking for diverse ethnicity

All the volunteers in our cohort identified themselves as Chinese. To check if any individuals

are of a diverse ethnicity, samples were clustered using multidimensional scaling (MDS).

Since there were no outliers in the MDS plot, no samples showed evidence of admixture and

we may safely conclude that all the remaining 2,113 individuals are indeed from a single

population.

4.2.2.2 Variant quality control

After conducting QC on the individuals, variant QC was performed. SNPs of poor quality

were removed, including those of low call rate, low minor allele frequency (MAF) and

deviating from the Hardy-Weinberg equilibrium (HWE), based on the genotype data for all

900,015 variants using PLINK [Purcell et al., 2007], following the pipeline used in [Y. Li,

2016].

SNP call rate and MAF checking

Minor allele frequency (MAF) refers to the frequency at which the minor allele (second most

common) occurs in a given population. SNPs with a very low MAF (or even monomorphic)

have little genetic variation and should be removed from the analysis.
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In this study, all the rare variants (MAF < 0.005) were excluded. For common variants (MAF

> 0.05), we dropped the SNPs with a > 3% missing rate. For the other variants (0.005 ≤
MAF ≤ 0.05), we removed the SNPs with a > 1% missing rate. As a result, 67,203 SNPs

were excluded from the following analysis.

Hardy-Weinberg equilibrium

The Hardy-Weinberg equilibrium (HWE) states that the allele and genotype frequencies in a

population would remain constant in the absence of other evolutionary factors, including mate

choice, mutation, natural selection, genetic drift and so on [Hardy et al., 1908; Weinberg,

1908]. Specifically, if we consider a single locus with two alleles denoted A and a, the

genotype frequencies would have a stable ratio of p2 : 2pq : q2, where p and q are, respectively,

the frequencies of A and a [Hardy et al., 1908; Weinberg, 1908].

Indications of significant deviation from the HWE include population stratification, selection,

and genotyping errors. Therefore, we performed an exact test developed by [Wigginton et al.,

2005] to exclude any SNPs deviating from the HWE using PLINK [Purcell et al., 2007].

21,422 SNPs did not pass the test (p-value < 10−5) and were dropped from our data set.

Other exclusion criteria

In our data set, some SNPs were coded to be on chromosome 0 (control), 24 (chromosome

Y), 25 (chromosome XY) or 26 (mitochondrial chromosome). These are generally not useful

in GWAS so we dropped them. Besides, we also excluded the SNPs recorded to have a

0 morgan genetic distance. After excluding these variants, there were 805,525 SNPs for

further analysis.

4.2.2.3 Summary of GWAS quality control

All the steps of GWAS QC conducted in this thesis are summarized in Figure 4.5. After QC,

the genotype data contained 2,113 individuals and 805,525 SNPs.
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Fig. 4.5 Flow chart of GWAS QC. Variant QC is conducted after sample QC.

4.2.3 Correcting for population stratification

Population stratification refers to the existence of a systematic difference in allele frequencies

between subpopulations within a given population. Hence, despite the fact that we have

verified all the samples to be of Chinese ancestry during QC, we still need to adjust for

population stratification in order to reduce false positives resulting from ancestral differences

unrelated to metabolomic measurements (the traits we aim to analyze in GWAS).

After matching our metabolomic data and the GWAS data after QC, we had 571 individuals

in total. EIGENSTRAT [Price et al., 2006] was used to model the ancestral differences

based on the genomic data of these individuals via PCA. Using the top principal components
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as covariates could correct for population stratification in GWAS [Price et al., 2006]. We

selected the first 10 principal components as covariates since judging from the PCA’s scree

plot (c.f. Figure 4.6), the first 10 could account for most of the variation. Besides, we need

to avoid using too many principal components and hence losing too much power since the

sample size of our GWAS data set is not huge.

Fig. 4.6 Scree plot showing the eigenvalues of the first 100 principal components of samples.

4.2.4 Association testing

Denote the two alleles for a SNP A (major) and a (minor). In this thesis, I used an additive

model for GWAS, assuming there is a uniform, linear increase in risk for each copy of the

a allele [Bush and Moore, 2012]. For instance, if the risk is 2k for Aa, according to my

assumption, there would be a 4k risk for aa. The association between a SNP X and a trait Y

could then be examined through a generalized linear regression model for a phenotype.

g(Y ) = b0 +b1 ·X +b2 ·SEX +b3 ·AGE +b4 ·PC1 + · · ·+b13 ·PC10 + ε (4.1)

In Equation 4.1, the link function g(·) is an identity function for continuous traits and a

logit function5 for binary traits. b0 is the intercept, which is normally ignored in GWAS. b1

5The logit function logit(p) = log( p
1−p ). It is the inverse of the sigmoid function. When the link function

is a logit function, the model becomes logistic regression.
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is the regression coefficient of SNP X , and its direction represents the effect of each extra

minor allele (i.e. a positive regression coefficient means that as there are more minor alleles,

the phenotype or its logit, if it is dichotomous, would on average increase). Sex, age and

the first ten principal components (c.f. Section 4.2.3) were used as covariates so that their

confounding is adjusted for. Finally, the noise ε was assumed to follow a normal distribution

N(0,σ2
ε ).

Prior to fitting the model, g(Y ) was first standardized to mean 0 and unit variance so that the

resulting regression coefficients would also be standardized and easier to explain. With the

fitted model, we could calculate the t statistic of b1, which is the fitted regression coefficient

b̂1 divided by its standard error. The asymptotic p-value of the t statistic would determine

whether trait Y is significantly associated with SNP X .

The model shown in Equation 4.1 was fitted for every metabolomic measurement against

every SNP in the QC-ed genomic data using PLINK [Purcell et al., 2007]. To correct for

multiple testing, we applied the widely accepted p-value threshold of 5×10−8 (c.f. Section

1.1.1.2).

4.2.5 Visualization of GWAS results

The association tests in Section 4.2.4 would return us a list of SNPs, their chromosomal

positions and p-values (p) signifying the statistical significance of the associations.

In practice, Manhattan plots are commonly used to visualize these results. In the graph, each

SNP is plotted as a point with its chromosomal position as x and its corresponding − log10(p)

as y. As a result, chromosomal regions with many highly significantly associated SNPs in LD

stand tall like skyscrapers in the plot, contrasting with short “blocks” of relatively insignificant

SNPs6. A horizontal line of − log10(5×10−8)≈ 7.3 is often drawn as a reference line in the

graph – all the SNPs above it reach genome-wide significance.

Another widely adopted diagnostic plot is the quantile-quantile (QQ) plot. For all the SNPs,

the observed p-values are plotted against their expected p-values following the uniform

distribution7. The p-values are often first − log10-transformed for clearer visualization. If

there exist some strongly associated SNPs, the scatterplot would deviate from the diagonal at

the upper-right corner. On the other hand, if the plotted data points systematically deviate

6Indeed, the plot bears a resemblance to its namesake, the famous Manhattan skyline.
7Under the null hypothesis, there exists no association and all the p-values are uniformly distributed.
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from the diagonal (e.g. inflation across the x-axis, even for very high p-values), the data

may be problematic, e.g. suffering from population stratification, batch effect or cryptic

relatedness [Turner, 2014].

In this study, the GWAS results from Section 4.2.4 were visualized via Manhattan plots and

QQ plots using the R package “qqman” [Turner, 2014].

4.2.6 Variant annotation

Common within a population, SNPs are the primary biomarkers found in GWAS. Each SNP

refers to a variation in a single nucleotide at a certain locus, and its location could have

profound importance in predicting functional significance [T. H. Shen et al., 2009].

The process of predicting the function of a SNP is called variant annotation. In this study,

I used ANNOVAR [K. Wang et al., 2010] to perform gene-based annotation for the SNPs

identified to be significantly associated with metabolomic measurements. Furthermore,

FUMA [Watanabe et al., 2017] was used to visualize the significant genomic risk loci

through regional plots. All the significant SNPs were categorized into one of the variant

classes listed in Table 4.2.

Table 4.2 Variant classes from gene-based annotation by ANNOVAR [K. Wang et al., 2010].

Variant class Explanation

Exonic Overlaps a coding
Splicing Within 2 bp of a splicing junction
ncRNA Overlaps a transcript without coding annotation in the gene definition
UTR5 Overlaps a 5’ untranslated region
UTR3 Overlaps a 3’ untranslated region

Intronic Overlaps an intron
Upstream Overlaps 1 kb region upstream of transcription start site

Downstream Overlaps 1 kb region downstream of transcription end site
Intergenic In intergenic region

For each variant category X , denote the percentage of significant SNPs falling into X as

psig, and the percentage of SNPs classified as X in the whole genome as pall . It would

be interesting to see whether certain variant categories are enriched (or underrepresented)

among the hits, i.e. we would like to test HA : psig = pall against HB : psig ̸= pall .
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Note that the two populations are not independent8. Therefore, we could not directly perform

a z-test. Fortunately, it is obvious that testing HA against HB is logically and statistically

equivalent to testing HC : psig = pinsig against HD : psig ̸= pinsig, where pinsig is the percentage

of insignificant SNPs falling into X . Hence, in this study, I tested HC against HD using a

two-tailed two-proportion z-test for each variant category.

The test statistic is:

z =
psig − pinsig√

pall(1− pall)(
1

nsig
+ 1

ninsig
)

(4.2)

where nsig (ninsig) is the total number of significant (insignificant) SNPs.

The p-value corresponding to the calculated z-statistic could then be derived according to the

z-table. To circumvent multiple testing, the FDR was controlled at level α = 0.1 through the

B-H procedure [Hochberg and Benjamini, 1990].

Additional to gene-based annotation, I checked whether the hits in my study have been

reported to be associated with certain diseases or traits in previous research using ANNOVAR

[K. Wang et al., 2010] and the GWAS catalog [Welter et al., 2013].

4.2.7 Meta-analysis

In GWAS, we scan the whole genome trying to identify common variants significantly

associated with traits of interest. Nevertheless, since the genetic effects of common alleles

are typically small, large sample sizes are required to gain enough statistical power for signal

detection [Evangelou and Ioannidis, 2013]. Unfortunately, the sample size of my GWAS-

metabolomic data set was quite small (571 individuals), rendering the study underpowered.

Therefore, meta-analysis9 was performed to increase power and reduce false positives.

[Kettunen et al., 2016] performed GWAS on 123 metabolomic measurements (also 1H

NMR spectroscopy data) based on up to 24,925 individuals. The metabolomic data used in

their study was extracted and quantified via the same high-throughput NMR metabolomics

platform as ours; hence the metabolomic phenotypes used in the two studies (theirs and ours)

could be matched properly.

8The set of significant SNPs is a subset of all the SNPs in the whole genome.
9Meta-analysis refers to statistically synthesizing information from multiple independent studies [Evangelou

and Ioannidis, 2013].
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116 metabolomic measurements were present in both studies. For each of these traits, the

summary statistics from the two studies were matched by chromosome / base position; over

85% of the SNPs in our genetic data were also present in theirs. Meta-analysis was next

performed in Plink [Purcell et al., 2007] using a random effect approach, assuming that the

true effect sizes of SNPs may differ from study to study [Evangelou and Ioannidis, 2013].

The summary statistics from meta-analysis were used for polygenic scoring, which would be

covered in the next chapter.

4.3 Results

The 130 genome-wide association studies (one for each metabolomic measurement) have

identified 123 unique SNPs significantly associated with at least one of the metabolomic

measurements. Summary statistics of all the significant results are shown in Table 4.4.

As could be seen in Figure 4.7, metabolomic measurements related to lipids and fatty acids

tend to have more associated GWAS hits – the metabolomic measurement with the largest

number of hits is mean diameter for VLDL particles (VLDL.D).

There were altogether 42 metabolomic measurements with one or more significantly associ-

ated SNP(s), and their association results are visualized in Appendix A. It is worth noting

that metabolomic measurements tended to form “clusters” (e.g. Alb, S.HDL.L and S.HDL.P)

– variants significantly associated with one metabolite in a cluster were quite likely to be

significantly associated with the others in the cluster as well. This is probably due to the fact

that certain metabolomic traits have high relatedness with each other and justifies Section

2.3.2.3, where I tried to perform dimensionality reduction on metabolites through hierarchical

clustering.

The 123 significant variants found are of the types listed in Table 4.3. Among all the

significant SNPs, exonic, intronic and UTR3 variants were enriched, whereas intergenic

variants were underrepresented. A majority of the significant SNPs (47.15%) were intronic,

and another 19.51% were exonic, ncRNA exonic/intronic, UTR3 or UTR5 – these variants hit

52 unique loci, which are listed in Table 4.5. It has been shown that in GWAS test statistics,

(1) UTR5, exonic and UTR3 SNPs show the largest abundance of associations, (2) intronic

SNPs are only moderately enriched, and (3) intergenic SNPs are relatively underrepresented

[A. J. Schork et al., 2013]. This is more or less in line with my results, except that in my

study, intronic variants are the most heavily enriched. Further research is needed to determine
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whether the vast enrichment of intronic SNPs in my study is because of direct functional

significance or it is simply due to the LD between the significant intronic SNPs and other

unidentified functional SNPs nearby [McCauley et al., 2007; D. N. Cooper, 2010].

Table 4.3 Types of variants significantly associated with one or many metabolomic traits.

Type psig pinsig p-value q-value Status

Exonic 6.50% 2.18% 0.0010 0.0042 Enriched
Intronic 47.15% 36.10% 0.0107 0.0214 Enriched

Non-coding RNA (exonic) 1.63% 0.50% 0.0785 0.1255 (Insignificant)
Non-coding RNA (intronic) 5.69% 5.88% 0.9280 0.9438 (Insignificant)

Intergenic 32.52% 51.67% 0.0000 0.0002 Underrepresented
Upstream 0.81% 0.76% 0.9438 0.9438 (Insignificant)

UTR3 4.88% 1.79% 0.0096 0.0214 Enriched
UTR5 0.81% 0.27% 0.2428 0.3237 (Insignificant)
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Fig. 4.7 Bar plot of the counts of significantly associated SNPs for 130 metabolomic mea-
surements. The 130 metabolomic measurements are clustered using hierarchical clustering
based on Kendall’s correlation – the dendrogram is cut into six subtrees by height.
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4.3.1 Polyunsaturated fatty acids and the FADS1/FADS2 loci

As shown in Figure 4.8, for polyunsaturated fatty acids (PUFA) other than 18:2, the strongest

association was found at the FADS2 locus on chromosome 11 (rs174577; p-value = 1.731×
10−13). FADS2 is a protein-coding gene in the fatty acid desaturase (FADS) gene family.

It is related to alpha-linolenic (omega3) and linoleic (omega6) acid metabolism pathways

[Stelzer et al., 2016]. The association extended upstream, encompassing MYRF (a myelin

regulatory factor gene), TMEM258 (transmembrane protein 258, a protein-coding gene) and

FADS1 (fatty acid desaturase 1, another member of the FADS gene family).

Fig. 4.8 Regional plot showing the genomic risk loci associated with otPUFA.

4.3.2 Lipid/FA related metabolites and the CTTNBP2 locus

The CTTNBP2 locus (the cortactin-binding protein 2 gene) on chromosome 7 was found to

be strongly associated with a large number of metabolomic measurements related to fatty

acids and lipids, including albumin, average number of methylene groups in a fatty acid

chain, average fatty acid chain length, ratio of omega-9 and saturated fatty acids to total

fatty acids, mean diameter for HDL particles, total cholesterol in HDL3, mean diameter

for LDL/IDL particles, concentration of small HDL particles and mean diameter for VLDL

particles (VLDL.D).

Take VLDL.D for example. It was significantly associated with rs10254610 (an intronic vari-

ant at the CTTNBP2 locus) with a p-value of 8.334×10−14. The association weakened while

extending upstream, covering CFTR, the cystic fibrosis (CF) transmembrane conductance

regulator gene (Figure 4.9).
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Fig. 4.9 Regional plot showing the association between VLDL.D and the CTTNBP2 locus.

4.3.3 Total cholesterol in HDL3 and the GRHL1 locus

As shown in Figure 4.10, total cholesterol in HDL3 (HDL3.C) was significantly associated

with two independent SNPs at the GRHL1 locus (the grainyhead like transcription factor

1 gene) on chromosome 2 – rs16867256 (exonic; p-value = 1.335×10−8) and rs6735658

(intronic; p-value = 1.476×10−8).

Fig. 4.10 Regional plot showing the association between HDL3.C and the GRHL1 locus.

4.3.4 Glucose and the LRRC29 locus

Glucose (Glc) was found to be significantly associated with rs13338688 (an intronic variant

at the LRRC29 locus on chromosome 16) with a p-value of 1.262× 10−10 (Figure 4.11).
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LRRC29 (leucine rich repeat containing 29) encodes a member of the F-box protein family

[Stelzer et al., 2016].

Fig. 4.11 Regional plot showing the association between Glc and the LRRC29 locus.

4.3.5 Overlap with previous studies

17 of the 123 SNPs significantly associated with one or more metabolomic measurements

identified in my study have also been reported in previous GWAS studies. These are listed in

Table 4.6. The two sets of findings are rather consistent with each other. Unfortunately, none

of the previous reports is directly about LDD or other musculoskeletal disorders.
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4.4 Discussion

In this study, 130 genome-wide association studies (GWAS) for serum 1H NMR metabolomic

measurements were performed based on a population cohort of 571 individuals, in order

to gain knowledge on the underlying genetics of serum metabolism. 123 unique SNPs

significantly associated with one or more metabolomic measurements were identified; among

them, exonic, intronic and UTR3 variants were enriched, whereas intergenic variants were

underrepresented. There were altogether 42 metabolomic measurements with one or more

significantly associated SNP(s), most of them related to lipids and fatty acids.

4.4.1 Discussion of selected significant loci

4.4.1.1 Polyunsaturated fatty acids and the FADS1/FADS2 loci

A strong association between polyunsaturated fatty acids (PUFA) other than 18:2 and the

FADS1/FADS2 loci has been identified. FADS2 is an important paralog of FADS1 [Stelzer

et al., 2016], and FADS1 has been found to be associated with lipid metabolism disorders

[Tian et al., 2016; Gromovsky et al., 2018].

Previous studies have also shown that the FADS gene cluster could influence lipid and PUFA

levels in European [Glaser et al., 2010], Chinese [P. Li et al., 2018] and Korean [S. Lee et al.,

2018] populations. Indeed, the FADS genes encode delta-5 desaturase and delta-6 desaturase

enzymes, which are crucial in regulating the synthesis of long-chain PUFA [Lattka et al.,

2010]. By playing an important role in synthesizing and regulating PUFAs, the FADS genes

could largely affect the metabolism of essential fatty acids and potentially, the well-being of

an individual [S. Lee et al., 2018].

4.4.1.2 Lipid/FA related metabolites and the CTTNBP2 locus

The CTTNBP2 locus was found be significantly associated with a group of metabolomic

measurements related to fatty acids and lipids. The association extended upstream and

weakly covers CFTR.

As a protein-coding gene, CTTNBP2 mainly controls dendritic spinogenesis and dendritic

spine maintenance [Y.-K. Chen et al., 2012]. In mouse, it has been discovered to be related to
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cytoskeletal protein binding [Hill et al., 2004]. Relatively little past literature exists regarding

the role of CTTNBP2 in lipid/FA metabolomics, except for a recent study demonstrating the

association between CTTNBP2 and triglycerides [Hebbar et al., 2018].

On the other hand, the CFTR gene is relatively more relevant to blood lipid levels since it

is related to the CFTR metabolic syndrome. The gene encodes the CFTR protein, which

builds a salt channel that allows chloride to move in and out of body cells [Borowitz et al.,

2009]. If the salt channel malfunctions, chloride could not move freely as intended, and

abnormal mucus would form in the pancreas and other organs, leading to the development of

CF [Borowitz et al., 2009]. CF often harms digestion and hence proper absorption of fat and

protein, resulting in nutrition problems and poor growth [Borowitz et al., 2009]. Nevertheless,

this relationship between CFTR and lipid traits is not directly causal. Besides, in my study,

no significant independent SNPs at the CFTR locus has been identified. Therefore, the strong

association between lipid/FA related traits and CTTNBP2 might not be related to CFTR

pathways. Further study is needed to replicate my findings and to understand the role of

CTTNBP2 in FA/lipid metabolism better.

4.4.1.3 Total cholesterol in HDL3 and the GRHL1 locus

The GRHL1 gene encodes a transcription factor from the grainyhead family, and regulates

lipid metabolism by peroxisome proliferator-activated receptor alpha [Stelzer et al., 2016]. It

has also been found to be a risk locus for breast cancer [Michailidou et al., 2017] and prostate

cancer [Eeles et al., 2013]. The link between GRHL1 and total cholesterol in HDL3 remains

unclear.

4.4.1.4 Glucose and the LRRC29 locus

LRRC29 (the leucine-rich repeat containing 29 gene) is a protein-coding gene. Previous

GWAS studies have identified its association with HDL cholesterol [Nagy et al., 2017; Nagy

et al., 2017]. HDL has been found to be involved in glucose metabolism since it could control

the homeostasis of glucose by mechanisms like insulin secretion [Drew et al., 2012]. It is

possible that the signal found in my study is actually mediated by HDL.
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4.4.2 Limitation of this study

Based on the common disease / common variant hypothesis, GWAS seeks to identify common

variants significantly associated with traits of interest. Since common variants typically have

relatively small effect sizes [Goldstein et al., 2009], GWAS requires a large sample size in

order to be able to detect significant associations. One limitation of this study is that our

sample size was relatively small (571 individuals in total). I only have a moderate confidence

on the novel findings and future replication studies are much needed.

Unfortunately, measuring the metabolome is still quite expensive at the moment. As a

result, most of the metabolomic GWAS suffer from small sample sizes. One possible way to

boost the power of GWAS with limited data is employing multi-trait methods [Porter and

O’Reilly, 2017] on high-dimensional metabolomic data, taking advantage of the fact that the

metabolomic measurements are closely correlated to each other.





5

Associating different phenotypes with
metabolomic measurements via
polygenic scoring

5.1 Introduction

With the rapid development of nuclear magnetic resonance (NMR) spectroscopy techniques,

hundreds of quantitative metabolomic measurements could now be taken for cohorts with

biological samples [Suhre and Gieger, 2012]. These metabolomic measurements could be

treated as “intermediate” phenotypes1 linking genomic data to phenotypic data, which are

valuable as potential biomarkers for different conditions and traits [Kettunen et al., 2016].

Since accurately and precisely measuring the human metabolome could be quite costly and

require state-of-the-art equipment, cohorts with metabolomic data are often quite small

compared with, say, cohorts with genomic data. Since GWAS loci for metabolomic traits

typically have a large effect size [Gieger et al., 2008; Rhee et al., 2013], it is possible to

“estimate” the human metabolome based on GWAS summary statistics for metabolomic

measurements and genomic data through genetic risk prediction methods like polygenic

scoring. By analyzing the relationship between different phenotypes and the estimated

metabolomic traits, we could understand the metabolomic context of the phenotypes better.

1Recall that as shown in Figure 1.11, metabolomic data lies between genomic data and phenotypic data in
the overall flow of omics information.
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Additionally, this metabolome estimation model could be reused in cohorts (preferably of a

similar population) with GWAS data and no metabolomic data, aiding future researchers.

In this chapter, the metabolome is estimated through polygenic scoring using genomic

data and GWAS summary statistics from previous meta-analyses (c.f. Section 4.2.7). The

association between estimated metabolomic traits and various phenotypes is next tested using

regression methods, and potential metabolomic biomarkers for the phenotypes are identified.

5.2 Materials and methods

5.2.1 Study sample

Following the procedures stated in Section 2.2.5, the serum samples of 814 individuals were

obtained for the application of 1H NMR spectroscopy, and 137 metabolomic measurements

were recorded for each individual.

After data filtering and normalization (c.f. Section 2.3.2) to reduce noise and increase

the robustness of consequent analyses, the metabolomic data set included 130 metabolomic

measurements (c.f. Table 2.10) for 757 individuals. Furthermore, to reduce the dimensionality

of our data, 66 metabolomic features were defined through hierarchical clustering and

dynamic tree cutting, which are listed in Table 2.11.

Among the 757 subjects, 571 also had GWAS data (i.e. “Data set I” in Figure 2.10).

Procedures for genotyping are described in Section 2.2.4.

This study also utilized height, weight, body mass index (BMI), amount of cigarette smoking,

five clinical phenotypes (c.f. Section 2.13) and the composite LDD phenotypes defined in

Section 2.3.1.3 based on the MRI reads of two experienced physicians, Dr. Jaro Karppinen

(JK) and Dr. Dino Samartzis (DS). The amount of subjects with both genotype and phenotype

data, but no metabolomic data (i.e. “Data set II” in Figure 2.10) was phenotype-dependent,

ranging from 632 to 1,214.
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5.2.2 Polygenic scoring

Lassosum [Mak et al., 2017], a genetic risk prediction (GRIP) software, was used to calculate

polygenic risk scores (PRS) of the 116 metabolomic measurements2 for all the people with

genetic data in our cohort (2,113 individuals in total). Based on a penalized regression

framework, Lassosum could account for linkage disequilibrium (LD) and constructs PRS

utilizing both GWAS summary statistics and a reference panel [Mak et al., 2017]. It has been

shown that Lassosum could achieve better predictive accuracy than other PRS-based GRIP

methods [Mak et al., 2017].

In my study, the standard pipeline of Lassosum was used. The base data files were set to be

the combined GWAS summary statistics from the meta-analyses (c.f. Section 4.2.7), whereas

our genetic data was selected to be the reference panel. The LD regions defined for the east

Asian population in [Berisa and Pickrell, 2016] were considered. Only chromosomes 1 to 22

were used in PRS construction, and pseudo-validation was performed to select the best set of

parameters for Lassosum when calculating the PRS.

5.2.3 Regression analysis: one phenotype, one metabolomic PRS

In order to look into the relationship between metabolomic polygenic risk scores (PRS) and

the 40 phenotypes listed in Table 2.13, a set of regression analyses was conducted. To avoid

over-fitting, all the analyses were performed on a subset of people with both GWAS and

phenotypic data, but no metabolomic data (i.e. I removed the people that are among the 571

I performed the original GWAS on – this resulted in “Data set II” in Figure 2.10).

For each metabolomic feature X ,

• For each continuous phenotype, I regressed it on age, sex, the PRS for X and the first

ten ancestry informative principal components PC1, . . . ,PC10.

Phen = b0 +b1 ·AGE +b2 ·SEX +b3 ·PRSX

+b4 ·PC1 + · · ·+b13 ·PC10 + e
(5.1)

2Recall that even though we have 130 metabolomic measurements, only 116 of them could be matched with
the traits considered in the other group’s study I use for meta-analysis. Please refer to Section 4.2.7 for more
details.



136 Associating phenotypes with metabolomic traits via polygenic scoring

• For each binary phenotype, I performed logistic regression regressing the pheno-

type status (TRUE or FALSE) on age, sex, the PRS for X and the first ten ancestry

informative principal components PC1, . . . ,PC10.

logit(Phen) = b0 +b1 ·AGE +b2 ·SEX +b3 ·PRSX

+b4 ·PC1 + · · ·+b13 ·PC10 + e
(5.2)

Before running each regression, the PRS were standardized so that b3, our focus of interest, is

more interpretable. The p-value attached to b3 was recorded, and a 95% confidence interval

for b3 was calculated.

5.2.3.1 Controlling for multiple testing

Since 4,640 regression models (40 phenotypes × 116 metabolomic PRS3) were fitted in total,

the issue of multiple testing arose. To circumvent this, two types of FDR-based approaches

were adopted.

The aggregated FDR approach

In this approach, all 4,640 p-values were lumped together, and the aggregated FDR was

calculated following the B-H FDR procedure (c.f. Section 3.2.2.1). If for a Phen-MetabPRS

(phenotype-metabolomic PRS) pair, the adjusted p-value of b3 was less than 0.1, significance

of the association between the phenotype and the metabolomic PRS was declared.

The adaptive group FDR approach

Since certain metabolites may have a group of associated phenotypes with relative low,

but insignificant q-values and vice versa, it is more robust to also take into consideration

group information when calculating the FDR. This could be achieved through the group B-H

procedure [Hu et al., 2010].

Assume that the hypotheses could be partitioned into m groups, g1, . . . ,gm. Further assume

that our scenario is an “oracle” case – for each group g j ( j = 1, . . . ,m), we already know π j,

3In this study, I did not use the reduced metabolomic features (c.f. Section 2.3.2.3) mainly because (1) in
this study, the sample size is large enough to provide a reasonably good statistical power for analysis; and (2) if
I use the original measurements instead of the reduced features, my results would be more interpretable.
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the proportion of true H0, which is the number of true H0 in group g j divided by the total

number of tests in g j.

1. In group g j, for each p-value pi, j (i = 1, . . . ,n j, where n j is the number of hypotheses

in group g j), calculate the corresponding weighted p-value pw
i, j = pi, j ·

π j
1−π j

.

• If π j = 1 (i.e. in group g j all the H0 are true), set pw
i, j to ∞.

• If π j = 1 for all g j ( j = 1, . . . ,m), accept all the H0 and stop.

2. Pool all the weighted p-values and sort them in ascending order pw
(1) ≤ ·· · ≤ pw

(N),

where N = ∑
m
j=1 n j is the total number of hypotheses.

3. For a given level of significance α , calculate the weighted α by αw = α

1−π0
, where π0

is the overall proportion of true H0.

4. Find the largest k such that pw
(k) ≤

kαw

N .

• If k exists, reject the k hypotheses associated with pw
(1), . . . , pw

(k).

• If k does not exist, reject none of the hypotheses.

In practice, π0,π1, . . . ,πm could be estimated by various techniques, e.g. the least slope

method [Benjamini and Hochberg, 2000].

This study utilized the adaptive group B-H procedure to control the FDR at 0.1. First, for

each group g j, π j was estimated by π̂ j using the least slope method. The above “oracle”

group B-H algorithm was next applied with all π j replaced by π̂ j. Two grouping schemes

were considered – (1) group by metabolomic measurement (116 groups, 40 p-values in each

group); and (2) group by phenotype (40 groups, 116 p-values in each group).

5.2.4 Regression analysis: one phenotype, multiple metabolomic PRS

Section 5.2.3 fitted one regression model for each Phen-MetabPRS pair. Instead of doing this,

we could also regress each phenotype on age, sex, the first ten ancestry informative principal

components and all the PRS for metabolomic measurements. Only 40 models would be fitted

in this way, and by incorporating more information, the resulting models would be able to

account for more variation in the phenotypes.
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One hindrance to this approach is that our sample size is quite limited (632 to 1,214,

depending on the phenotype), and there could be as many as 116+12 = 128 explanatory

variables in the model.

The model could be formulated as a hypothesis testing problem – H0: none of the independent

variables explain any of the variability in the phenotype vs. H1: at least one of the regression

coefficients is different from 0. This could be tested with an F test, and we could estimate the

statistical power for this test.

Assume that our sample size for a certain phenotype is 800 and that the model could only

explain 5% of the variance in the phenotype. Then the effect size is 0.05/(1−0.05)≈ 0.0526.

For a full model with 128 explanatory variables, the numerator degrees of freedom for the F

test is 128, and the denominator degrees of freedom is 800−128−1 = 671. The power of

the test with a significance level of 0.05 is approximately 0.6874, which is pretty low.

5.2.4.1 Dimensionality reduction on metabolomic PRS

To increase power, we could first perform dimensionality reduction on the metabolomic PRS

according to the clusters defined in Table 2.11. Since the PRS was calculated based on the

meta-analysis results and only 116 metabolomic measurements were considered, I removed

the 14 missing traits from the defined clusters. Empty metabolomic groups were dropped,

and the composite metabolomic PRS were re-calculated based on the new metabolomic

groups. In this way, 59 new metabolomic PRS were defined, including 32 composite ones

(calculated as the average of all the metabolomic PRS in that cluster) and 27 single ones

(essentially the original metabolomic PRS).

Now, the full model only has 59+12 = 71 explanatory variables. The numerator degrees of

freedom for the F test is 71, and the denominator degrees of freedom is 800−71−1 = 728.

The power of the test with a significance level of 0.05 is approximately 0.8662, which is

much better.

Another advantage of performing dimensionality reduction on metabolomic PRS first is

the decrease in multicollinearity. Multiple regression models assume independence among

the explanatory variables, and it is obvious that many of the metabolomic traits (and the

corresponding PRS) are strongly associated with each other. For instance, it is safe to say

that the PRS of S.HDL.L could be linearly predicted by the PRS of S.HDL.P with substantial

accuracy. Since the sample size is too small, it is also unrealistic to add metabolite-metabolite
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interaction terms to the model. By defining only one composite metabolomic PRS for a

cluster of highly correlated metabolomic measurements, multicollinearity is controlled for,

rendering the fitted model more precise.

5.2.4.2 Model fitting and selection

Again, to avoid overfitting, the regression analysis was performed on the people with both

GWAS and phenotypic data, but no metabolomic data. Before running each regression, the

“composite” metabolomic PRS were standardized.

The full regression models were quite straightforward. Each continuous phenotype was

regressed on age, sex, the first ten ancestry informative principal components PC1, . . . ,PC10

and the 59 “composite” metabolomic PRS.

Phen = b0 +b1 ·AGE +b2 ·SEX +b3 ·PC1 + · · ·+b12 ·PC10

+b13 ·PRS1 + · · ·+b71 ·PRS59 + e
(5.3)

On the other hand, for each binary phenotype, we performed logistic regression regressing the

phenotype status (TRUE or FALSE) on age, sex, the first ten ancestry informative principal

components PC1, . . . ,PC10 and the 59 “composite” metabolomic PRS.

logit(Phen) = b0 +b1 ·AGE +b2 ·SEX +b3 ·PC1 + · · ·+b12 ·PC10

+b13 ·PRS1 + · · ·+b71 ·PRS59 + e
(5.4)

Using the R package “MASS”, bidirectional stepwise model selection based on Akaike

information criterion4 (AIC) was performed.

Starting with a full model, at each step, the addition/deletion of each variable was tested with

AIC as the criterion. When the inclusion of a variable gave the most significant improvement

of the fitted model, it was added; when the exclusion of a variable improved the fit most

significantly, it was dropped. This process was repeated until no further improvement of the

model (via adding or dropping variables) can be made.

For each phenotype, the p-value of the final selected model was recorded. The aggregated

FDR was controlled at the level of 0.1 through the B-H procedure.

4For a given data set, the AIC estimates the relative information loss of a statistical model [Akaike, 2011].
The smaller the AIC is, the less information the model loses, and the higher the quality of that model is.
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5.2.5 Penalized regression analysis

Section 5.2.4 attempted to include all 116 metabolomic PRS as explanatory variables in one

multiple regression model. Since the sample size is a bit limited for the giant saturated model,

feature selection was conducted to increase power. The selection process was two-fold: (1)

dimensionality reduction on metabolomic PRS prior to model fitting; and (2) bidirectional

stepwise model selection after fitting the full model. This approach has some drawbacks. To

begin with, it would not necessarily produce the best model if there are redundant predictors

[Judd et al., 2011]. Furthermore, the estimated regression coefficients may be biased and

require shrinkage [Tibshirani, 1996]. To circumvent these issues, a set of penalized regression

analyses was performed.

5.2.5.1 A brief introduction to penalized regression methods

Given a predictor matrix X ∈ Rn×p and a response vector Y ∈ Rn (where n is the number

of samples and p is the number of features), the ordinary least squares regression (e.g. the

models shown in Equations 5.1 and 5.3) could be formulated as an optimization problem:

min
β∈Rp

∥Y −Xβ∥2
2 (5.5)

Penalized regression methods achieve regularization simply by adding a penalty term. For

example, ridge regression [Hoerl and Kennard, 1970] aims to solve the below convex

optimization problem:

min
β∈Rp

∥Y −Xβ∥2
2 +λ ∥β∥2

2 (5.6)

where λ ≥ 0 is a tuning parameter and ∥β∥2
2 = ∑

p
i=1 |βi|2 is the squared L2 norm of β .

Similarly, Lasso [Tibshirani, 1996] aims to solve the below convex optimization problem:

min
β∈Rp

∥Y −Xβ∥2
2 +λ ∥β∥1 (5.7)

where λ ≥ 0 is a tuning parameter and ∥β∥1 = ∑
p
i=1 |βi| is the L1 norm of β .

The basic idea behind Lasso (ridge regression) is to force the L1 (squared L2) norm of β

to be small so that the model is regularized. In the case of ridge regression, the size of the

coefficients are shrunk – usually, none of them is set to zero. On the contrary, since Lasso
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uses the L1 norm instead, many of the regression coefficients would be forced to 0, effectively

choosing a simpler model without those trivial coefficients. Therefore, Lasso could both

avoid over-fitting and render the fitted model more sparse and interpretable (essentially

feature selection).

In terms of prediction accuracy, Lasso has been shown to outperform stepwise regression

when the signal-to-noise ratio (SNR) is low [Hastie et al., 2017].

5.2.5.2 Model fitting

Since Lasso is better suited for sparse scenarios (i.e. small number of non-zero β ), it is the

choice of penalized regression method in my study. To avoid over-fitting, the models were

fitted using a subset of people with both GWAS and phenotypic data, but no metabolomic

data (i.e. the people that were among the 571 I performed the original GWAS on were

dropped).

Adapting the model shown in Equation 5.8 (note that all 116 metabolomic PRS were consid-

ered5), 40 Lasso models were fitted using the R package “glmnet” [Friedman et al., 2010].

The tuning parameter λ was selected via ten-fold cross validation. The loss used for cross

validation was squared error for Gaussian models (i.e. continuous phenotypes) and deviance

for logistic models (i.e. binary phenotypes).

Phen or logit(Phen) = b0 +b1 ·AGE +b2 ·SEX +b3 ·PC1 + · · ·+b12 ·PC10

+b13 ·PRS1 + · · ·+b128 ·PRS116 + e
(5.8)

5.3 Results

5.3.1 Regression analysis: one phenotype, one metabolomic PRS

5.3.1.1 Based on aggregated FDR

Among the 4,640 tests, 146 were significant at a FDR cut-off of 0.1. As could be seen in

Table 5.1, it is fairly safe to say that almost all the p-values are truly significant if we set the

5Again, in this study, I did not use the reduced metabolomic features (c.f. Section 2.3.2.3) because (1) in
this study, the sample size is large enough to provide a reasonably good statistical power for analysis; and (2) if
I use the original measurements instead of the reduced features, my results would be more interpretable.
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FDR cut-off to be 0.01. Nevertheless, we could still check all the Phen ∼ single MetabPRS

pairs with q-value < 0.1, bearing in mind that some of them could be falsely significant. All

the Phen ∼ single MetabPRS regression results with a significant b3 at an aggregated FDR

cut-off of 0.1 are listed in Table 5.2.

Table 5.1 # of significant Phen∼ single MetabPRS pairs at different aggregated FDR cut-offs.

Interval Count # of expected falses

(−∞,0.01) 120 1.2
(−∞,0.05) 134 6.7
(−∞,0.1) 146 14.6

Height

There were 4 Height ∼ single MetabPRS regression models with a significant b3. The related

metabolomic measurements were the average number of methylene groups per a double

bond (CH2.DB), other polyunsaturated fatty acids than 18:2 (otPUFA), omega-3 fatty acids

(FAw3) and the average number of methylene groups in a fatty acid chain (CH2.in.FA). On

average, if the polygenic scores for CH2.DB and CH2.in.FA increase, height would increase;

on the contrary, if the PRS for otPUFA and FAw3 increase, height would decrease.

Weight and BMI

A majority of the significant results was related to weight (62 regression models) and BMI

(75 regression models). This is quite intuitive since an individual’s lipid profile is highly

associated with his or her body fat distribution [Bertoli et al., 2003].

Figure 5.1 (Figure 5.2) demonstrates the magnitude and direction of the significant b3’s

in Weight ∼ single MetabPRS (BMI ∼ single MetabPRS) regression models. The b3’s

are sorted based on hierarchical clustering on their corresponding original metabolomic

measurements. In both Figure 5.1 and Figure 5.2, we could observe two major clusters. The

top left cluster mainly consists of high density lipoprotein (HDL) related metabolites, and the

associated regression coefficients are negative, meaning on average, if the polygenic scores

of HDL related metabolites increase, weight and BMI would decrease. On the contrary, the

bottom right cluster mainly contains very low density lipoprotein (VLDL) related metabolites,
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and the associated regression coefficients are positive, meaning on average, if the polygenic

scores of VLDL related metabolites increase, weight and BMI would increase as well.

Sciatica and LDD MRI phenotypes

Among all the clinical phenotypes, only sciatica was found to be positively influenced by the

PRS of total lipids in IDL (IDL.L) with a q-value of 0.0634.

There existed significant findings for four of the LDD MRI phenotypes. As the PRS of the

mean diameter for VLDL particles (VLDL.D) decreases, overall MC (binary), lower MC

(binary) and lower MC (continuous) would on average increase. The study also discovered

that the PRS of sphingomyelin (SM) bears a significantly positive correlation with L3 LDD

severity.
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Fig. 5.1 Plot of the 95% CI of significant b3’s in Weight ∼ single MetabPRS regression
models. The metabolomic PRS are sorted based on hierarchical clustering on their original
metabolomic measurements with complete linkage.

Fig. 5.2 Plot of the 95% CI of significant b3’s in BMI ∼ single MetabPRS regression
models. The metabolomic PRS are sorted based on hierarchical clustering on their original
metabolomic measurements with complete linkage.
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5.3.1.2 Based on adaptive group FDR

If we group the hypotheses by metabolomic measurement when running the adaptive group

B-H procedure, at the FDR cut-off of 0.1, there were in total 22 (out of the 4,640) regression

models with a significant b3 (Table 5.3).

The findings were quite similar to those in Section 5.3.1.1. The strongest signals were

regarding weight and BMI – the PRS for HDL related metabolomic measurements tended to

negatively influence weight and BMI, whereas the PRS for IDL, LDL, and VLDL related

metabolites positively affected weight and BMI on average. The PRS for VLDL.D was found

to have a negative relationship with BMI and positively influenced modic change, which was

also consistent with previous findings.

It has also been found that on average, as the PRS for tyrosine increases, weight and BMI

would increase, whereas the overall LDD would decrease.

If we group the hypotheses by phenotype when running the adaptive group B-H procedure,

at the FDR cut-off of 0.1, there were in total 222 (out of the 4,640) regression models with a

significant b3 (Table 5.4).

The findings were, again, quite similar to those in Section 5.3.1.1. Additionally, a group

of LDL related metabolomic measurements (L.LDL.L, L.LDL.CE, L.LDL.C, L.LDL.P,

L.LDL.PL) was found to be positively associated with modic change, which reinforced the

potential of VLDL.D/LDL.D as a biomarker for MC.
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Table 5.3 Phen ∼ single MetabPRS regressions with a significant b3 (group FDR; by metab).

Phenotype Metab PRS Sample size b3 p-value q-value

Weight L.HDL.CE 1214 -1.5181 6.0676E-09 2.9411E-06
Weight L.HDL.FC 1214 -1.5933 8.2474E-10 5.5967E-07
Weight L.HDL.L 1214 -1.5213 5.0143E-09 2.8356E-06
Weight LDL.D 1214 -1.0457 5.8721E-05 1.2453E-02
Weight Tyr 1214 1.0103 1.0263E-04 2.5629E-03
Weight XXL.VLDL.PL 1214 1.4065 5.8304E-08 7.8200E-06

BMI CH2.in.FA 1214 -0.4795 1.4749E-07 5.5603E-05
BMI IDL.TG 1214 0.2765 2.2320E-03 1.7134E-02
BMI L.HDL.CE 1214 -0.5842 1.1031E-10 9.3567E-08
BMI L.HDL.FC 1214 -0.5949 3.9146E-11 9.3567E-08
BMI L.HDL.L 1214 -0.5867 7.9255E-11 9.3567E-08
BMI LDL.D 1214 -0.4526 5.2758E-07 1.7901E-04
BMI M.LDL.L 1214 0.2717 2.6886E-03 9.5690E-02
BMI Tyr 1214 0.3891 1.6356E-05 4.4558E-04
BMI VLDL.D 1214 -0.3209 3.9008E-04 9.0499E-03
BMI XXL.VLDL.PL 1214 0.5651 3.2505E-10 9.3567E-08

Overall LDD Tyr 745 -0.5206 4.1475E-03 6.2143E-02
Lower SS VLDL.D 763 -0.1455 5.5589E-03 9.2119E-02

Overall MC (cont) VLDL.D 750 -0.1202 3.5565E-03 6.2143E-02
Overall MC (binary) VLDL.D 750 -0.3125 1.9816E-03 3.8310E-02

Lower MC (cont) VLDL.D 750 -0.1148 2.4896E-04 6.1884E-03
Lower MC (binary) VLDL.D 750 -0.3964 1.9127E-04 5.1201E-03
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5.3.2 Regression analysis: one phenotype, multiple metabolomic PRS

Due to the lack of positive data points, type 1 modic change was dropped from the analysis.

All the other 39 models were found to be significant at the FDR threshold of 0.1, and the

adjusted R2 of the fitted models ranged from 0.0258 (upper HIZ) to 0.5547 (height).

Table 5.5 contains a summary of the regression results. For all 39 fitted models, the adjusted

R2 and model p-values are reported. Furthermore, within each model, all the metabolomic

PRS having a regression coefficient b with p-value < 0.01 are listed. The components of

each composite metabolomic feature could be found in Table 2.11.

Table 5.5 Phen ∼ multiple MetabPRS regression results.

Phenotype Adjusted R2 Model p-value MetabPRS b p-value of b

Height 0.5547 <2.20E-16 VLDL.D -0.0133 3.51E-03

gr16 -0.0129 7.04E-03

gr24 -0.0153 9.67E-03

Weight 0.3710 <2.20E-16 ApoB 4.0175 1.03E-04

gr9 2.4662 1.56E-03

gr24 -3.0273 3.62E-03

BMI 0.0989 4.91E-14 ApoB 1.1861 9.89E-05

gr9 0.8774 9.58E-04

gr24 -0.8622 1.25E-03

Smoking 0.1270 <2.20E-16 VLDL.D -1.1970 6.07E-03

LBP - 4.28E-07 gr25 -1.5415 3.01E-03

gr6 0.7513 8.49E-03

gr23 1.2914 9.01E-03

Sciatica - 3.55E-06 gr26 0.8691 6.75E-04

gr10 -0.5528 8.58E-04

Oswestry 0.0289 2.64E-04 gr12 -4.8398 6.17E-03

gr3 4.0409 8.19E-03

VAS (test day) 0.0380 1.07E-04 CH2.DB -3.8524 5.02E-03

VAS (severest) 0.0760 8.33E-12 gr14 -6.1462 8.49E-03

Overall LDD 0.1058 1.33E-13 Tyr -0.9882 2.62E-03

gr20 3.4267 5.83E-03

Deg score 0.0659 5.34E-09 Tyr -0.6551 6.34E-03

(Continued on next page)
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Table 5.5 Phen ∼ multiple MetabPRS regression results (cont’d).

Phenotype Adjusted R2 Model p-value MetabPRS b p-value of b

Dev score 0.0725 1.50E-10 - - -

L1 LDD 0.0701 2.94E-09 ApoB -0.2770 5.41E-04

Free.C 0.2078 1.65E-03

bOHBut -0.2093 2.82E-03

L2 LDD 0.1347 <2.20E-16 gr26 -0.8115 5.07E-04

gr17 0.5106 1.79E-03

gr3 -0.5492 1.87E-03

gr24 0.4302 6.45E-03

L3 LDD 0.1430 <2.20E-16 SM 0.3197 2.48E-03

AcAce 0.3670 3.16E-03

L4 LDD 0.0674 4.07E-08 Tyr -0.4093 3.43E-03

Ile 0.3704 5.19E-03

L5 LDD 0.0376 3.99E-04 gr2 1.4026 7.73E-04

Upper LDD 0.1698 <2.20E-16 AcAce 0.6728 2.75E-03

Lower LDD 0.0416 4.93E-05 Ile 0.6620 1.47E-03

gr20 2.1591 8.05E-03

Overall DB 0.0444 1.20E-05 - - -

Upper DB 0.0732 3.09E-11 Alb 0.2544 4.28E-03

Lower DB 0.0367 1.50E-04 Tyr -0.2333 6.77E-03

gr20 0.8312 7.79E-03

Ile 0.2082 9.28E-03

Overall SS 0.1646 <2.20E-16 AcAce 0.5582 3.78E-03

Upper SS 0.2172 <2.20E-16 AcAce 0.4475 5.47E-04

ApoB -0.4506 6.49E-03

bOHBut -0.3360 9.57E-03

Lower SS 0.0542 5.92E-07 gr13 -0.6941 1.04E-03

gr2 0.6649 1.36E-03

VLDL.D -0.2948 3.32E-03

Overall HIZ 0.0460 1.71E-05 gr11 0.6713 1.49E-03

gr3 -0.4426 5.96E-03

Ile 0.1996 7.94E-03

Upper HIZ 0.0258 1.71E-03 MUFA -0.1814 3.71E-03

(Continued on next page)
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Table 5.5 Phen ∼ multiple MetabPRS regression results (cont’d).

Phenotype Adjusted R2 Model p-value MetabPRS b p-value of b

gr13 0.1329 3.94E-03

Lower HIZ 0.0483 1.17E-05 Ile 0.1807 3.58E-03

S.HDL.TG 0.2216 5.85E-03

gr11 0.4696 7.70E-03

Overall MC (cont) 0.0813 4.19E-09 gr1 0.7859 9.26E-05

gr28 -0.5024 2.52E-03

gr13 -0.4588 6.88E-03

gr14 -0.3760 7.21E-03

Overall MC (bool) - 4.73E-07 gr4 1.6869 1.47E-03

VLDL.D -0.5756 4.78E-03

gr7 1.5874 6.10E-03

Upper MC (cont) 0.0589 1.63E-06 gr26 -0.3216 4.04E-04

gr20 0.4694 1.74E-03

gr7 0.2175 3.29E-03

gr27 0.1172 6.34E-03

Upper MC (bool) - 1.16E-08 gr23 4.6925 7.21E-05

gr25 -5.1404 1.29E-04

gr28 -4.4234 3.84E-04

gr20 9.8167 4.70E-04

gr21 -7.3295 1.22E-03

gr17 2.9191 1.26E-03

gr24 3.6333 4.83E-03

gr27 1.8733 5.06E-03

Ile -1.5137 8.19E-03

His -1.3497 9.01E-03

Lower MC (cont) 0.0810 4.51E-09 VLDL.D -0.2104 6.93E-04

gr14 -0.3345 1.70E-03

gr1 0.1943 3.25E-03

gr13 -0.5041 4.91E-03

Lower MC (bool) - 3.38E-08 VLDL.D -0.8461 2.39E-04

Any MC (DS) - 1.44E-09 gr6 0.8353 3.43E-03

His -0.5638 4.33E-03

(Continued on next page)
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Table 5.5 Phen ∼ multiple MetabPRS regression results (cont’d).

Phenotype Adjusted R2 Model p-value MetabPRS b p-value of b

gr14 -1.0231 5.05E-03

Type 2 MC (DS) - 1.52E-07 gr1 1.2878 4.52E-03

Overall SN 0.0453 2.96E-06 gr4 1.5956 1.13E-03

gr25 -0.6582 1.36E-03

Upper SN 0.0375 1.40E-04 gr27 -0.2858 6.61E-03

gr4 1.2138 7.00E-03

Lower SN 0.0570 3.06E-07 gr26 -0.2193 3.19E-03

gr25 -0.1809 3.73E-03

gr23 0.1589 9.37E-03

5.3.3 Penalized regression analysis

In 12 fitted models6, all the regression coefficients of metabolomic PRS terms were shrunk

to zero. The R2 of the other 28 models, where one or more metabolomic PRS had some

predictive power for the phenotype, ranged from 0.0012 (lower DB) to 0.5531 (height).

Table 5.6 contains a summary of the Lasso results. The R2 of all 40 fitted models are reported.

Besides, within each model, all the metabolomic PRS with a non-trivial regression coefficient

β are listed.

Table 5.6 Phen ∼ multiple MetabPRS Lasso results.

Phenotype R2 MetabPRS β

Height 0.5531 VLDL.D -0.0045

Bis.FA -0.0022

otPUFA -0.0019

Free.C -0.0018

XL.VLDL.TG -0.0018

S.HDL.P -0.0009

M.HDL.C -0.0005

(Continued on next page)

6The corresponding phenotypes are: lower back pain, Oswestry disability total score, LDD developmental
score, L1 LDD, L5 LDD, lower LDD, upper DB, upper HIZ, type 1 MC, overall SN, upper SN and lower SN.
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Table 5.6 Phen ∼ multiple MetabPRS Lasso results (cont’d).

Phenotype R2 MetabPRS β

S.HDL.TG -0.0005

SM -0.0003

XS.VLDL.L -0.0001

Gp -0.0000

Glc 0.0028

Ace 0.0033

CH2.in.FA 0.0052

Weight 0.3408 ApoB 0.0162

BMI 0.0727 S.HDL.L 0.0149

Ala 0.0447

Leu 0.0596

HDL.C 0.0723

ApoB 0.2134

Smoking 0.1133 VLDL.D -0.2073

Gp 0.2523

LBP 0.0231 - -

Sciatica 0.0162 L.HDL.L -0.1075

Oswestry 0.0014 - -

VAS (test day) 0.0047 - -

VAS (severest) 0.0525 XXL.VLDL.L -0.2703

L.VLDL.TG -0.0558

M.VLDL.TG -0.0225

bOHBut 0.0074

Bis.FA 0.0330

IDL.L 0.1779

Overall LDD 0.0785 Tyr -0.3662

Deg score 0.0409 Tyr -0.1449

Dev score 0.0501 - -

L1 LDD 0.0232 - -

L2 LDD 0.0992 Cit 0.0015

Urea 0.0180

Tyr 0.0701

(Continued on next page)
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Table 5.6 Phen ∼ multiple MetabPRS Lasso results (cont’d).

Phenotype R2 MetabPRS β

L3 LDD 0.1167 AcAce 0.0077

SM 0.0449

L4 LDD 0.0246 Tyr -0.0331

L5 LDD 0.0000 - -

Upper LDD 0.1385 Tyr -0.1042

Lower LDD 0.0000 - -

Overall DB 0.0174 Tyr -0.0500

Upper DB 0.0493 - -

Lower DB 0.0012 Tyr -0.0165

Overall SS 0.1344 Tyr -0.0856

Upper SS 0.1954 Tyr -0.1203

bOHBut -0.0082

SM 0.0202

Bis.DB 0.0472

AcAce 0.0908

Lower SS 0.0182 VLDL.D -0.0924

Overall HIZ 0.0296 M.HDL.PL -0.1107

Ace -0.0456

Tyr -0.0319

ApoA1 -0.0085

M.VLDL.TG 0.0028

Lac 0.0112

otPUFA 0.0142

S.HDL.TG 0.0302

Ile 0.0788

Upper HIZ 0.0000 - -

Lower HIZ 0.0247 M.HDL.PL -0.0426

ApoA1 -0.0257

PC -0.0222

Ace -0.0023

Tyr -0.0023

bOHBut 0.0051

(Continued on next page)
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Table 5.6 Phen ∼ multiple MetabPRS Lasso results (cont’d).

Phenotype R2 MetabPRS β

S.HDL.TG 0.0278

Ile 0.0565

Overall MC (cont) 0.0047 VLDL.D -0.0387

L.LDL.CE 0.0022

Overall MC (bool) 0.0128 VLDL.D -0.1780

Upper MC (cont) 0.0101 His -0.0142

IDL.TG 0.0128

Est.C 0.0137

Upper MC (bool) 0.0306 His -0.0381

IDL.TG 0.0748

Est.C 0.1048

Lower MC (cont) 0.0300 VLDL.D -0.1118

XXL.VLDL.PL -0.0089

L.LDL.CE 0.0218

Lower MC (bool) 0.0417 VLDL.D -0.4138

Urea -0.0515

XXL.VLDL.PL -0.0216

Bis.DB 0.0350

L.LDL.L 0.0428

L.LDL.FC 0.0500

Any MC (DS) 0.0573 His -0.2465

XXL.VLDL.PL -0.1922

LDL.D -0.1261

Alb -0.0393

L.LDL.CE 0.1239

L.LDL.C 0.1464

Bis.DB 0.1778

Type 1 MC (DS) 0.0000 - -

Type 2 MC (DS) 0.0542 XXL.VLDL.PL -0.3265

LDL.D -0.1981

Pyr -0.0950

Alb -0.0713

(Continued on next page)
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Table 5.6 Phen ∼ multiple MetabPRS Lasso results (cont’d).

Phenotype R2 MetabPRS β

His -0.0654

VLDL.D -0.0469

Gly -0.0313

Bis.DB 0.0137

Glol 0.0140

S.HDL.TG 0.0279

XL.HDL.P 0.0491

L.LDL.PL 0.1099

CH2.DB 0.1703

Overall SN 0.0058 - -

Upper SN 0.0000 - -

Lower SN 0.0228 - -

5.4 Discussion

To my knowledge, this is the first study associating anthropometric, clinical and LDD

MRI phenotypes with polygenic risk scores of metabolomic measurements. By integrating

genomic, metabolomic and phenotypic data, potential biomarkers for LDD were identified

with a purely data-driven approach, providing us with insights into the possible underlying

metabolomic mechanism of LDD.

This study also serves as an illustration of the integrative framework proposed for the analysis

of big omics data. Cohorts with metabolomic data are typically small compared to those with

genomic data. Through the approach of this study, metabolomic data is no longer compulsory

to future researchers if they would like to study the underlying metabolomic continuum of

phenotypes of interest. The only data sets required are (1) their own genomic data and (2)

GWAS summary statistics of metabolomic measurements based on a similar population from

other studies.

Furthermore, the collection of metabolomic data for larger GWAS cohorts would enable us

to build more accurate metabolome prediction models. Accompanied with transcriptome

imputation methods like PrediXcan [Gamazon et al., 2015], this integrative framework could
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potentially help us understand comprehensively7 how information flows from the human

genome to the transcriptome, to the metabolome and, finally, to the phenotype of interest.

This knowledge is of great significance in deciphering complex diseases, which is pivotal in

biomedical research as well as providing high-quality personalized health care.

5.4.1 Discussion of selected significant findings

5.4.1.1 The relationship between lipid levels and weight/BMI

As expected, the strongest signals found in this study concerned weight and BMI – the PRS

for IDL, LDL, and VLDL related metabolites positively affected weight and BMI on average,

whereas the PRS for HDL related metabolomic measurements tended to negatively influence

weight and BMI.

To understand these results, consider the function of HDL, LDL, IDL and VLDL particles.

As shown in Figure 5.3, lipids are transported in the circulatory system packed in different

types of lipoproteins. Synthesized in the liver, VLDL delivers energy-rich triacylglycerol

(TAG) to cells in the body [University of Washington, 2018]. As VLDL particles are derived

of TAG, they become denser and are next remodeled at the liver, transforming into LDL,

which delivers cholesterol to cells [University of Washington, 2018]. If there is any excess

cholesterol from cells, HDL would bring it back to the liver [University of Washington, 2018].

The density of IDL is between that of VLDL and LDL particles. Like VLDL and LDL, it

transports a variety of triglyceride fats and cholesterol to cells.

Therefore, if the HDL levels are too low, the process of reverse cholesterol transport would

be hindered – the excess cholesterol from cells cannot be brought back to the liver in

time, increasing the risk of obesity and artery diseases. On the other hand, a high level of

VLDL/IDL/LDL particles indicates increased triglycerides. In patients with obesity, VLDL

is often over-produced [Adiels et al., 2006].

5.4.1.2 Association between lipid levels and sciatica

In this study, sciatica was found to be positively influenced by the PRS for IDL related

metabolites and negatively affected by the PRS for HDL related metabolites. This was in

7Partially comprehensive... Noise is always present.
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Fig. 5.3 The role of HDL, LDL, IDL, and VLDL particles in liver cholesterol transport
[University of Washington, 2018].

line with [Leino-Arjas et al., 2008], which discovered the positive correlation between higher

atherogenic8 serum lipid levels and sciatica.

[Longo et al., 2011] has shown that patients with symptomatic herniated lumbar disc have

significantly higher triglyceride and total cholesterol concentration. The herniated discs may

compress the spinal nerve root, which is one of the causes of sciatica [Longo et al., 2011].

Therefore, blood lipid levels may be a potential biomarker for sciatica and LDD in general.

5.4.1.3 Potential biomarkers for LDD

Generally speaking, my metabolomic PRS related findings were more significant for LDD

phenotypes defined on upper disc levels9. This is probably due to the fact that the upper disc

levels are more developmental in nature; since the polygenic risk scores were calculated based

on genomic data, they could explain the variance in developmental traits better (as opposed

to degenerative conditions). This may also indicate shared genetic components between LDD

and metabolomic traits. Further causal modeling studies are needed to determine whether the

8With the tendency to promote fatty deposits in the arteries.
9Except for the phenotypes with too highly imbalanced data – with too few positive cases, we lacked

statistical power to detect such significant association, if any.
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risk loci for certain metabolomic measurements are also significantly associated with LDD

phenotypes.

Blood lipid levels and the mean diameter for VLDL particles

The study showed that as the PRS of the mean diameter for VLDL particles (VLDL.D)

decreases, the degree of modic change would on average become more severe. A low

VLDL.D is typically bad [Beard et al., 1996; Colhoun et al., 2002]. It has been found in

samples with retinopathy, which is associated with higher VLDL particle levels in patients

[Colhoun et al., 2002]. High amounts of oxidized LDLs activate TLR2/4 (toll-like receptor

2/4), and chronic stimulation of TLRs facilitates fatty marrow conversion as in type 2 modic

change [Dudli et al., 2016]. Hence, both VLDL.D and VLDL/LDL levels may be potential

biomarkers for LDD, more specifically type 2 MC.

A high level of VLDL/IDL/LDL particles also indicates increased triglycerides, one of the

risk factors of atherosclerosis [Longo et al., 2011]. Studies have detected an association

between atheromatous lesions in the aorta and LDD [Kauppila, 2009]. Moreover, LBP has

been found to be associated with aortic calcification and stenosis of lumbar arteries [Kauppila,

2009]. Further clinical research is required to clarify the association of blood lipid levels,

atherosclerosis, and LBP/LDD.

Sphingomyelins

From the regression results, we could see that the PRS of sphingomyelin (SM) bore a

significantly positive correlation with L3 disc degeneration severity and signal intensity loss

in the upper levels.

Early degeneration of the intervertebral disc is associated with a change in cellular dif-

ferentiation from notochordal cells (NCs) to chondrocyte-like cells (CLCs) in the nucleus

pulposus (NP) [Smolders et al., 2013]. Gene expression profiling studies have shown that the

SM catabolic process is up-regulated in the transition from NC-rich NP to CLC-rich NP in

chondrodystrophic dogs [Smolders et al., 2013]. Hence, SM may be one of the candidate

biomarkers of LDD.
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Tyrosine

The study demonstrated that on average, as the PRS for tyrosine increases, various LDD

related phenotypes would decrease. Theoretically, as a precursor to neurotransmitters,

tyrosine could elevate plasma neurotransmitter levels [Rasmussen et al., 1983] and hence

boost metabolism. Therefore, it is widely believed to stimulate fat loss. Currently, there are

no studies specifically showing that tyrosine could relieve LDD symptoms. Further research

is needed to understand the role of tyrosine in LDD.

5.4.2 Limitations of this study

As discussed in Section 4.4.2, one limitation of this study was the small sample size (571 in-

dividuals in total) of our original GWAS. Therefore, the GWAS suffered from a relatively low

statistical power in detecting significant genetic associations of metabolomic measurements,

and the PRS generated in this study would be a less accurate estimate of the metabolomic

traits. To improve the estimation performance, a larger GWAS cohort with metabolomic mea-

surements is needed. As an alternative, we could also leverage pleiotropy through multi-trait

studies to increase power.

Another possible limitation of this study was the subjectiveness of MRI reads by clinicians.

Different clinicians may have distinct tendencies (biases) in reading the MRI scans, possibly

making the resulting phenotypes not very reproducible. As the (fake) saying goes – to err is

human, so why not use an AI10? Recent studies have proposed novel methods to automatically

segment the lumbar vertebrae from computed tomography (CT) images [Janssens et al., 2018]

and compute LDD gradings from MRIs via supervised learning [Jamaludin et al., 2017a;

Jamaludin et al., 2017b]. Nevertheless, the latter methods for automatic LDD grading are still

supervised and hence still quite dependent on the accuracy and consistency of clinician reads.

Future LDD research may benefit from using semi-supervised or unsupervised computer

vision algorithms11 to define LDD phenotypes in a purely data-driven manner.

10Short for artificial intelligence. Nowadays, an abused buzzword.
11For instance, [Cho et al., 2015] and [Siva et al., 2013] are two methods for unsupervised object detection.
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Conclusion

So we beat on, boats against the current, borne back ceaselessly into the past.

– F. Scott Fitzgerald, The Great Gatsby

6.1 Summary of main findings

As a prevalent global health problem1, lower back pain (LBP) is one of the top conditions

leading to disability [Vos et al., 2012]. A major reason for LBP is lumbar disc degeneration

(LDD), which is measurable through magnetic resonance imaging (MRI) assessment. In

Chapter 2, I demonstrated that (1) the severity of LDD is significantly associated with disc

level; and (2) the five disc levels form two clusters. Accordingly, a scheme utilizing truncated

normal distribution to quantify the degree of LDD from raw MRI reads was proposed. The

composite MRI phenotypes calculated based on this scheme were analyzed in this thesis.

In recent years, researchers have gained interest in the role of altered metabolism in the

development and progression of LDD [Samartzis et al., 2013a]. In Chapter 3, I carried

out correlation analysis to study the relationship between LDD and metabolomic traits.

One of the major findings was the positive correlation between acetate / small LDL and

developmental LDD phenotypes. This might indicate shared genetic components between

1Occupational determinants of LBP include bending and carrying loads [Ozguler et al., 2000]. One particular
population at risk of LBP consists of researchers and graduate students since they often have bad posture
(Figure 6.1).
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Fig. 6.1 Graduate student researching and suffering from LBP [Cham, 2000].

LDD and lipid metabolism since acetate is an epigenetic metabolite enhancing lipid synthesis

[Gao et al., 2016]. Furthermore, I discovered that type 2 modic change (MC) tends to be

negatively associated with HDL related metabolites. This is consistent with our current

understanding of the pathology of type 2 MC – high amounts of oxidized LDLs, often

accompanied by low HDL levels, could activate TLR2/4 (toll-like receptor 2/4), and chronic

stimulation of TLRs could facilitate fatty marrow conversion, leading to the development of

type 2 MC [Dudli et al., 2016].

Apart from the correlation analysis, self-organizing maps were also fitted to explore the

underlying metabolomic continuum of LDD and several other phenotypes in Chapter 3.

Unfortunately, there were no significant results related to LDD, which is probably due to the

limited sample size and heavily imbalanced nature of LDD phenotypes. Nevertheless, we

could observe a strong association between an individual’s metabolomic profile (especially in

terms of lipid-related measurements) and his or her weight/BMI. This reinforces the current

clinical knowledge [W. M. Miller et al., 2005].

It is widely accepted that genetic variants associated with metabolomic traits typically have

relatively large effect sizes [Gieger et al., 2008; Rhee et al., 2013]. In order to better

understand the genetic roots of metabolomic measurements and in turn, the metabolomic

context of different traits and conditions (e.g. LDD), I scanned the whole genome for SNPs

significantly associated with different serum 1H NMR metabolomic measurements in Chapter

4. 130 genome-wide association studies (GWAS) for the metabolomic traits were performed

based on a population cohort of 571 individuals, identifying 123 unique SNPs significantly

associated with one or more metabolomic measurements. Gene-based annotation showed

that among all the hits, exonic, intronic and UTR3 variants were enriched, whereas intergenic
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variants were underrepresented. There were altogether 42 metabolomic measurements with

one or more significantly associated SNP(s), most of them related to lipids and fatty acids.

For instance, polyunsaturated fatty acids were found to be significantly associated with the

FADS1/FADS2 loci, and CTTNBP2 was identified as a potential risk locus for a cluster of

lipid/FA related metabolites.

Following up the detected genetic associations, meta-analysis was performed and the human

metabolome was estimated through polygenic scoring. Anthropometric, clinical and LDD

MRI phenotypes were associated with polygenic risk scores of metabolomic traits in Chapter

5, identifying novel biomarkers for LDD including blood lipid levels, the mean diameter for

VLDL particles, sphingomyelins, and tyrosine. These potential biomarkers for LDD could

inspire us in understanding the possible underlying metabolomic mechanism of LDD and

potentially aid personalized diagnosis and treatment of LBP.

The study in Chapter 5 also illustrates the framework for the integrative analysis of big omics

data proposed in this thesis (Figure 1.16). In the framework, metabolome prediction models

are first trained based on GWAS and metabolomic data. Future researchers could then utilize

these fitted models to estimate metabolomic features for their GWAS cohort (preferably

from a similar population to that the models were trained on) and study the underlying

metabolomic continuum of phenotypes of interest. This would be quite useful in real-life

scenarios since cohorts with metabolomic data are typically smaller and harder to obtain

compared to those with genomic data. This process of the integration of big omics data could

help us discover known and novel metabolomic biomarkers associated with complex traits

and gain a better understanding of the biological mechanisms beneath these associations.

6.2 Future directions

6.2.1 GWAS-related future work

6.2.1.1 Increasing the power of GWAS for metabolomic traits

The population cohort studied in this thesis is one of the world’s largest cohorts with LDD

MRI data. However, since there were much fewer people with metabolomic data, my current

genome-wide association studies suffered from a lack of statistical power in detecting truly

positive associations due to a limited sample size (571 individuals).



180 Conclusion

The obvious way to circumvent this is to increase the sample size. Since measuring the human

metabolome is still quite costly at the moment, another possible way to boost the power of

GWAS is employing multi-trait methods [Porter and O’Reilly, 2017] on high-dimensional

metabolomic data, making use of the fact that the metabolomic measurements are closely

correlated to each other.

6.2.1.2 Further research

Following my current GWAS, we could also conduct various other studies.

First of all, to better understand the mechanisms underlying the metabolomic continuum, we

could perform pathway-based and cell-type enrichment analyses based on my GWAS results.

Additionally, the findings of my study could be contrasted with those from other GWAS on

metabolomic measurements in terms of, for instance, characteristics of the cohorts and the

identified SNPs. In this way, we could assess our confidence in the current results as well as

gain a better understanding of them.

Thirdly, causal variants pointing to metabolic mechanisms underlying the significant associa-

tions could be identified through fine-mapping algorithms like PAINTOR [Kichaev et al.,

2014] and CAVIAR [Hormozdiari et al., 2014].

Finally, researchers have hypothesized that molecular adaptations in metabolic pathways

have accompanied the dietary shift during evolutionary courses [Blekhman et al., 2014].

Hence, the genetic loci significantly associated with metabolomic features may be under

selection pressure, which could be tested for statistically.

6.2.2 Automatic phenotyping for lumbar disc degeneration

In my study (and almost all the current LDD studies based on MRI), the MRI phenotypes

were defined based on the reads by experienced clinicians.

Please imagine you are one of these clinicians. You load the black and white spine images

on your computer. You carefully zoom in and out, checking if there is a tiny white dot2 in

an intervertebral disc. You do this, for every disc level shown in the image and for every

individual with a scan. If we only consider the lumbar region, for our cohort, you need to

2This is an annular tear, seen as a high intensity zone.



6.2 Future directions 181

perform 1,416× 5 = 7,080 checks. Your eyes are now sore, back achy, arms are heavy,

but wait up – that is only one of the LDD phenotypes. You still need to check for disc

bulging, signal intensity loss and modic/endplate changes shown as zigzagged lines along

the endplate. With five phenotypes, that is now a whopping total of 7,080× 5 = 35,400

reads. Additionally, to attain better precision, not all of these readings are true or false

ones. Certain phenotypes are ordinal, meaning, for example, you would need to distinguish

different patterns/shades of gray3 and grade them as 0, 1, 2, or 3.

This is a tedious4 process. What’s worse, sometimes clinicians need to proof-read the same

cohort multiple times to reduce the error rate. To liberate the clinicians and increase the

accuracy of MRI reads, machine learning methods could be adapted to directly extract LDD

information from MRI scans [Jamaludin et al., 2017a; Jamaludin et al., 2017b].

Current methods for automatic LDD grading are still supervised and hence dependent on

the accuracy and consistency of clinician reads. Unfortunately, since different clinicians are

prone to distinct tendencies in reading the MRI scans (e.g. different distributions of 0, 1, 2,

and 3 in the previous example), the current MRI reads may be a little subjective and not very

reproducible. Future LDD research may benefit from using semi-supervised or unsupervised

image recognition algorithms to define LDD phenotypes in a purely data-driven way.

6.2.3 Integrating transcriptomic data into the analysis framework

This thesis mainly focused on the integrative analysis of genomic, metabolomic and pheno-

typic data. This analysis framework may benefit from incorporating transcriptomic data as

well (e.g. Figure 6.2) to make the overall model even more data-rich and interpretable.

Since this approach is completely driven by various types of big omics data, it benefits from

being free of potential biases from hypothesizing based on current knowledge. However,

as Aaron Levenstein once said, “Statistics are like bikinis. What they reveal is suggestive,

but what they conceal is vital.” Drawing conclusions solely relying on data without any

further human thinking could be hazardous. Therefore, any findings from this framework

(e.g. conclusions of this thesis) should be further examined by biologists and clinical experts

through laboratory research to gather experimental evidence in the future.

3This example is for signal intensity loss. In my study, this is measured with Schneiderman’s score.
4Again, a shout out to Dr. Jaro Karppinen and Dr. Dino Samartzis for making all this possible! I am really

sorry if I have depicted the reading process imprecisely and/or offended you by being melodramatic.
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Fig. 6.2 One possible way to integrate transcriptomic data into my analysis framework. In
this particular approach, summary-PrediXcan [Barbeira et al., 2016] is used for transcriptome
prediction. As a side note, to improve the performance of our metabolome prediction model
in the framework, more metabolomic data would be required.

6.3 Closing remarks: connecting the dots

A living organism is a strange, intricate and beautiful thing. Geneticists’ efforts to dissect

how its countless traits are developed and passed from generation to generation trace back

to when Gregor Mendel planted his first pea plants. With the rapid development of science

and technologies, computational researchers have joined forces with traditional biologists

in genetic research, and nowadays, the availability of various types of big omics data is

promoting a massive shift in the area.
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Most of us have learned to solve the “connect the dots” puzzle as a kid. The mystery of

inheritance is just like one of these puzzles waiting to be solved, with different types of

omics data, phenotypes of interest and environmental factors as scattered dots. This puzzle,

however, is much more complicated, since the solution to it, if any, is not a one-way path.

The edges between two dots could be extraverted (↔), and the relationships are almost never

one-to-one. Moreover, we need to understand the meaning behind each edge, which requires

the study of several other downstream or upstream edges.

Hopefully, through connecting these dots, or rather, the process of seeking to do so, we

could better understand how information flows from the human genome to the transcriptome,

the proteome, the metabolome and, finally, to traits of interest. This knowledge would

be valuable in aiding the personalized treatment of complex diseases and thus, providing

affordable, high-quality health care.

The quote at the beginning of this chapter is the very last sentence of “The Great Gatsby”,

one of my favorite books back when I was a teenager. I have always resonated with the

bittersweet sadness5 – that inevitable “Omnia Vanitas” feeling – flowing in the poetic line.

Yet still, its preceding sentence never fails to inspire me in the most harrowing days:

It eluded us then, but that’s no matter – tomorrow we will run faster, stretch out

our arms farther....And one fine morning –

– F. Scott Fitzgerald, The Great Gatsby

Therefore, at the end of this final chapter and my thesis, I would like to take the liberty of

inelegantly twisting my favorite ending.

The solution to this omics “connect the dots” puzzle has always eluded us, and perhaps it

forever will. Nevertheless, we actually never needed to attain a perfect solution. By gathering

larger cohorts with high-quality omics data, performing integrative analysis and conducting

lab experiments to examine the computational findings – by stretching out further, we would

be approaching that best solution asymptotically –

Till the “one fine morning”, that is truly ahead.

5Probably what Leopold Stotch would say as well.



* https://goo.gl/nv3gJH

https://goo.gl/nv3gJH


Appendix A

Visualization of GWAS results of
metabolomic measurements

Figures A.1 to A.42 visualize the GWAS results of the 42 metabolomic measurements with

at least one significantly associated SNP.

In the Manhattan plots (left sub-figures), the blue line suggests moderate significance1 and the

red line indicates genome wide significance2. The SNPs reaching genome-wide significance

are highlighted in green color; the top hit on each chromosome is also annotated.

All the QQ plots (right sub-figures) demonstrate significant deviations from the diagonal at

the upper-right corner, indicating the existence of significantly associated SNPs. Additionally,

there is no early deviation from the line of equality (y = x). Hence the significant findings

are probably not due to an artifact.

1Blue line: y =− log10(1×10−5).
2Red line: y =− log10(5×10−8).
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Fig. A.1 Visualization of the GWAS results of Alb.

Fig. A.2 Visualization of the GWAS results of FALen.

Fig. A.3 Visualization of the GWAS results of CH2.in.FA.
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Fig. A.4 Visualization of the GWAS results of Crea.

Fig. A.5 Visualization of the GWAS results of ApoA1.

Fig. A.6 Visualization of the GWAS results of HDL2.C.
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Fig. A.7 Visualization of the GWAS results of HDL.C.

Fig. A.8 Visualization of the GWAS results of Bis.DB.

Fig. A.9 Visualization of the GWAS results of VLDL.D.
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Fig. A.10 Visualization of the GWAS results of Gp.

Fig. A.11 Visualization of the GWAS results of XXL.VLDL.L.

Fig. A.12 Visualization of the GWAS results of XXL.VLDL.TG.
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Fig. A.13 Visualization of the GWAS results of XXL.VLDL.PL.

Fig. A.14 Visualization of the GWAS results of HDL.D.

Fig. A.15 Visualization of the GWAS results of otPUFA.
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Fig. A.16 Visualization of the GWAS results of S.HDL.L.

Fig. A.17 Visualization of the GWAS results of S.HDL.P.

Fig. A.18 Visualization of the GWAS results of FAw79S.FA.
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Fig. A.19 Visualization of the GWAS results of HDL3.C.

Fig. A.20 Visualization of the GWAS results of LDL.D.

Fig. A.21 Visualization of the GWAS results of CH2.DB.
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Fig. A.22 Visualization of the GWAS results of Glc.

Fig. A.23 Visualization of the GWAS results of L.LDL.FC.

Fig. A.24 Visualization of the GWAS results of S.LDL.L.
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Fig. A.25 Visualization of the GWAS results of M.LDL.L.

Fig. A.26 Visualization of the GWAS results of M.LDL.C.

Fig. A.27 Visualization of the GWAS results of LDL.C.
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Fig. A.28 Visualization of the GWAS results of S.LDL.C.

Fig. A.29 Visualization of the GWAS results of L.LDL.L.

Fig. A.30 Visualization of the GWAS results of M.LDL.CE.
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Fig. A.31 Visualization of the GWAS results of L.LDL.P.

Fig. A.32 Visualization of the GWAS results of L.LDL.PL.

Fig. A.33 Visualization of the GWAS results of L.LDL.CE.
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Fig. A.34 Visualization of the GWAS results of S.LDL.P.

Fig. A.35 Visualization of the GWAS results of M.LDL.P.

Fig. A.36 Visualization of the GWAS results of L.LDL.C.
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Fig. A.37 Visualization of the GWAS results of Gly.

Fig. A.38 Visualization of the GWAS results of AcAce.

Fig. A.39 Visualization of the GWAS results of IDL.C.eFR.
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Fig. A.40 Visualization of the GWAS results of XL.VLDL.PL.

Fig. A.41 Visualization of the GWAS results of Gln.

Fig. A.42 Visualization of the GWAS results of DB.in.FA.
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