
THE

BEGINNER’S

GUIDE TO

Y I M I N G L I , 1 5 M A R 2 0 1 7

IN TODAY’S GUIDE…
1. What is R? Why R?

2. Installation and “Hello World!” in R

3. R data types — vectors, matrices and data frames

4. R operators and managing a data frame

5. I/O and basic graphs in R

6. Pop quiz

W A R N I N G : C O M P L E T E L Y F O R B E G I N N E R S !

* A set of materials used in this workshop could be download via: http://web.hku.hk/~liym1018/projects.html#RWorkshop

http://web.hku.hk/~liym1018/projects.html#RWorkshop

IN TODAY’S GUIDE…
1. What is R? Why R?

2. Installation and “Hello World!” in R

3. R data types — vectors, matrices and data frames

4. R operators and managing a data frame

5. I/O and basic graphs in R

6. Pop quiz

W A R N I N G : C O M P L E T E L Y F O R B E G I N N E R S !

What is ?
(From Wikipedia)
• R is an open source programming language and

software environment for statistical computing and
graphics.

• The R language is widely used among statisticians
and data miners for developing statistical software
and data analysis.

What is ?
(From Wikipedia)
• R is an open source programming language and

software environment for statistical computing and
graphics.

• The R language is widely used among statisticians
and data miners for developing statistical software
and data analysis.

• R was created by Ross Ihaka and Robert Gentleman
as an implementation of the S programming language
(initial version: 1995; stable beta version: 2000).

What is ?
(From Wikipedia)
• R is an open source programming language and

software environment for statistical computing and
graphics.

• The R language is widely used among statisticians
and data miners for developing statistical software
and data analysis.

• R was created by Ross Ihaka and Robert Gentleman
as an implementation of the S programming language
(initial version: 1995; stable beta version: 2000).

Ross

What is ?
(From Wikipedia)
• R is an open source programming language and

software environment for statistical computing and
graphics.

• The R language is widely used among statisticians
and data miners for developing statistical software
and data analysis.

• R was created by Ross Ihaka and Robert Gentleman
as an implementation of the S programming language
(initial version: 1995; stable beta version: 2000).

Ross Robert

• R is free.
• R is available as Free Software under the terms of the

Free Software Foundation’s GNU General Public License
in source code form.

• Free as in “free speech”, not “free beer”!
• The users have the freedom to run, copy, distribute,

study, change and improve the software.

Why ?

Richard Stallman,
Founder of GNU project

https://www.gnu.org/philosophy/free-sw.en.html

• R is free.
• R is available as Free Software under the terms of the

Free Software Foundation’s GNU General Public License
in source code form.

• Free as in “free speech”, not “free beer”!
• The users have the freedom to run, copy, distribute,

study, change and improve the software.

Why ?

Richard Stallman,
Founder of GNU project

https://www.gnu.org/philosophy/free-sw.en.html

Why ?
• R is free.

• R is available as Free Software under the terms of the
Free Software Foundation’s GNU General Public License
in source code form.

• Fre e a s i n “ f re e s p e e c h ”, n o t “ f re e b e e r ” !

• The users have the freedom to run, copy, distribute,
study, change and improve the software.

https://www.gnu.org/philosophy/free-sw.en.html

Why ?
• R is free.

• R is available as Free Software under the terms of the
Free Software Foundation’s GNU General Public License
in source code form.

• Fre e a s i n “ f re e s p e e c h ”, n o t “ f re e b e e r ” !

• The users have the freedom to run, copy, distribute,
study, change and improve the software.

https://www.gnu.org/philosophy/free-sw.en.html

Why ?
• R is statistical.
• Use R for data analysis.

http://socserv.socsci.mcmaster.ca/jfox/Misc/sem/SEM-paper.pdf
https://www.jstatsoft.org/article/view/v048i02/v48i02.pdf
http://openmx.ssri.psu.edu/documentation

Why ?
• R is statistical.
• Use R for data analysis.

• Multiple linear regression
• fit <- lm(y ~ x1 + x2 + x3, data=mydata)

http://socserv.socsci.mcmaster.ca/jfox/Misc/sem/SEM-paper.pdf
https://www.jstatsoft.org/article/view/v048i02/v48i02.pdf
http://openmx.ssri.psu.edu/documentation

Why ?
• R is statistical.
• Use R for data analysis.

• Multiple linear regression
• fit <- lm(y ~ x1 + x2 + x3, data=mydata)

• One-way ANOVA
• fit <- aov(y ~ A, data=mydataframe)

http://socserv.socsci.mcmaster.ca/jfox/Misc/sem/SEM-paper.pdf
https://www.jstatsoft.org/article/view/v048i02/v48i02.pdf
http://openmx.ssri.psu.edu/documentation

Why ?
• R is statistical.
• Use R for data analysis.

• Multiple linear regression
• fit <- lm(y ~ x1 + x2 + x3, data=mydata)

• One-way ANOVA
• fit <- aov(y ~ A, data=mydataframe)

• Structural equation modelling
• Many packages available — sem, lavaan, OpenMX

http://socserv.socsci.mcmaster.ca/jfox/Misc/sem/SEM-paper.pdf
https://www.jstatsoft.org/article/view/v048i02/v48i02.pdf
http://openmx.ssri.psu.edu/documentation

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation.

Why ?
• R is statistical.
• Use R for data visualisation / art.

• R is statistical.
• Use R for data visualisation / art.

Why ?

• R is statistical.
• Use R for data art.

Why ?
* “Droid”. https://goo.gl/kYXRRw

https://goo.gl/kYXRRw

Why ?
• R is popular.

• Google trends data (https://goo.gl/jyOViq)

https://goo.gl/jyOViq

Why ?
• R is popular.

• Google trends data (https://goo.gl/jyOViq)
• With popularity comes a large community.

https://goo.gl/jyOViq
https://www.r-project.org/mail.html
http://stackoverflow.com/questions/tagged/r
https://www.r-bloggers.com/
https://cran.r-project.org/web/packages/Rcpp/index.html
http://ggplot2.org/
https://www.bioconductor.org/install/

Why ?
• R is popular.

• Google trends data (https://goo.gl/jyOViq)
• With popularity comes a large community.

Better support — easy to get help.
• R Mailing lists: https://www.r-project.org/mail.html (R-help,

R-package-devel, etc.)

• http://stackoverflow.com/questions/tagged/r

• https://www.r-bloggers.com/

https://goo.gl/jyOViq
https://www.r-project.org/mail.html
http://stackoverflow.com/questions/tagged/r
https://www.r-bloggers.com/
https://cran.r-project.org/web/packages/Rcpp/index.html
http://ggplot2.org/
https://www.bioconductor.org/install/

Why ?
• R is popular.

• Google trends data (https://goo.gl/jyOViq)
• With popularity comes a large community.

Better support — easy to get help.
• R Mailing lists: https://www.r-project.org/mail.html (R-help,

R-package-devel, etc.)

• http://stackoverflow.com/questions/tagged/r

• https://www.r-bloggers.com/

More developers — many packages available.
• Ranging from Rcpp to ggplot2 to Bioconductor!

https://goo.gl/jyOViq
https://www.r-project.org/mail.html
http://stackoverflow.com/questions/tagged/r
https://www.r-bloggers.com/
https://cran.r-project.org/web/packages/Rcpp/index.html
http://ggplot2.org/
https://www.bioconductor.org/install/

IN TODAY’S GUIDE…
1. What is R? Why R?

2. Installation and “Hello World!” in R

3. R data types — vectors, matrices and data frames

4. R operators and managing a data frame

5. I/O and basic graphs in R

6. Pop quiz

W A R N I N G : C O M P L E T E L Y F O R B E G I N N E R S !

Installing
• The Comprehensive R Archive Network (CRAN) is your

friend!
• Linux: I assume you could find your own way…

• RedHat-based: sudo yum install (or sudo dnf install)

• Debian-based: sudo apt-get install

• Slackware-based: You are on your own https://slackbuilds.org/
repository/13.37/academic/R/

• Windows: https://cran.r-project.org/bin/windows/base/
• Mac OS X: https://cran.r-project.org/bin/macosx/

https://slackbuilds.org/repository/13.37/academic/R/
https://slackbuilds.org/repository/13.37/academic/R/
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/

(Optional) Installing
• An open-source integrated development environment for R, available

via: https://www.rstudio.com/products/rstudio/download/

https://www.rstudio.com/products/rstudio/download/

(Optional) Installing
• An open-source integrated development environment for R, available

via: https://www.rstudio.com/products/rstudio/download/

Console for R
commands

https://www.rstudio.com/products/rstudio/download/

(Optional) Installing
• An open-source integrated development environment for R, available

via: https://www.rstudio.com/products/rstudio/download/

Source editor for
writing R scripts

Console for R
commands

https://www.rstudio.com/products/rstudio/download/

(Optional) Installing
• An open-source integrated development environment for R, available

via: https://www.rstudio.com/products/rstudio/download/

Source editor for
writing R scripts

Workspace to
view objects

Console for R
commands

https://www.rstudio.com/products/rstudio/download/

(Optional) Installing
• An open-source integrated development environment for R, available

via: https://www.rstudio.com/products/rstudio/download/

Source editor for
writing R scripts

Workspace to
view objects

Plots areaConsole for R
commands

https://www.rstudio.com/products/rstudio/download/

Running

Running

The R prompt

Running

Type a command

Running

• Hit “Enter”
• R evaluates the expression and

prints to screen the output

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

3. After the installation has finished, load the library.
• > library("ggplot2")

4. Read its manual and enjoy.

packages

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

3. After the installation has finished, load the library.
• > library("ggplot2")

4. Read its manual and enjoy.

packages

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

3. After the installation has finished, load the library.
• > library("ggplot2")

4. Read its manual and enjoy.

packages

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

3. After the installation has finished, load the library.
• > library("ggplot2")

4. Read its manual and enjoy.

packages

—“ggplot2” seems nice…

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

packages

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

3. Have some tea and wait for the installation to finish.

packages

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

3. Have some tea and wait for the installation to finish.

4. After the installation has finished, load the library.
• > library("ggplot2")

packages

Installing
1. Google for the R package you desire.

2. Open R and give the package installation command.
• > install.packages("ggplot2")
• You would be asked to choose a mirror. Just choose one close

to you — if the mirror is broken, try another one.

3. Have some tea and wait for the installation to finish.

4. After the installation has finished, load the library.
• > library("ggplot2")

5. Read its manual and enjoy.

packages

IN TODAY’S GUIDE…
1. What is R? Why R?

2. Installation and “Hello World!” in R

3. R data types — vectors, matrices and data frames

4. R operators and managing a data frame

5. I/O and basic graphs in R

6. Pop quiz

W A R N I N G : C O M P L E T E L Y F O R B E G I N N E R S !

data types
• R has a wide variety of data types including —

• Scalars
• Vectors (numerical, character, logical)
• Matrices
• Data frames
• Lists

• We could use class(objectName) to find out
which type an R object is.

data types
• R has a wide variety of data types including —

• Scalars
• Vectors (numerical, character, logical)
• Matrices
• Data frames
• Lists

• We could use class(objectName) to find out
which type an R object is.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

Assignment operator (“=” is also okay)
Here we are assigning a value to the vector named “a”.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

c() is actually a function in R, which concatenates, or combines.

> c(c(1, 2), c(3))
[1] 1 2 3

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE?

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)?

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA?

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

Vectors
• By “vector” we usually mean atomic vectors. An atomic vector is a

linear vector of a single primitive type.
• Examples

a <- c(1,2,5,3,6,-2,4) # Numeric vector

b <- c("one","two","three") # Character vector

c <- c(TRUE,TRUE,TRUE,FALSE,TRUE,FALSE) # Logical vector

• All indexing in R is base-one.
• a[1] returns 1
• c[3] returns TRUE
• b[0] returns character(0)
• a[10] returns NA

• A scalar is just a vector of length 1.

How about
categorical
variables?

Factors
• A factor vector is a special storage class used for qualitative data.

• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

Factors
• A factor vector is a special storage class used for qualitative data.

• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Unordered factor
> mons <- c(“March”,”April”,”January”,”November","January","September",
“October",“September”,”November”,"August","January","November",
“November","February",“May”,“August","July","December","August",
"August","September","November","February", "April")

> mons2 <- factor(mons) # Convert to unordered factor

Factors
• A factor vector is a special storage class used for qualitative data.

• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Unordered factor
> mons <- c(“March”,”April”,”January”,”November","January","September",
“October",“September”,”November”,"August","January","November",
“November","February",“May”,“August","July","December","August",
"August","September","November","February", "April")

> mons2 <- factor(mons) # Convert to unordered factor

The part after # is interpreted as comments

Factors
• A factor vector is a special storage class used for qualitative data.

• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Unordered factor
> mons <- c(“March”,”April”,”January”,”November","January","September",
“October",“September”,”November”,"August","January","November",
“November","February",“May”,“August","July","December","August",
"August","September","November","February", "April")

> mons2 <- factor(mons) # Convert to unordered factor

> table(mons2) # Build contingency table

mons2

 April August December February January July

 2 4 1 2 3 1

 March May November October September

 1 1 5 1 3

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor
> mons3 <- factor(mons,levels=c(“January”,”February”,”March”,“April”,
”May”,”June”,”July","August","September","October","November",
"December"),ordered=TRUE) # Convert to ordered factor

Factors

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor
> mons3 <- factor(mons,levels=c(“January”,”February”,”March”,“April”,
”May”,”June”,”July","August","September","October","November",
"December"),ordered=TRUE) # Convert to ordered factor

> mons3[1] < mons3[2] # Now we could do comparison

Factors

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor
> mons3 <- factor(mons,levels=c(“January”,”February”,”March”,“April”,
”May”,”June”,”July","August","September","October","November",
"December"),ordered=TRUE) # Convert to ordered factor

> mons3[1] < mons3[2] # Now we could do comparison

[1] TRUE

Factors

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor
> mons3 <- factor(mons,levels=c(“January”,”February”,”March”,“April”,
”May”,”June”,”July","August","September","October","November",
"December"),ordered=TRUE) # Convert to ordered factor

> mons3[1] < mons3[2] # Now we could do comparison

[1] TRUE

> table(mons3) # Build contingency table

mons

 January February March April May June

 3 2 1 2 1 0

 July August September October November December

 1 4 3 1 5 1

Factors

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

Factors

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

> levels(fert)

[1] "10" "20" "50"

Factors

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

> levels(fert)

[1] "10" "20" "50"

> mean(as.numeric(levels(fert)[fert]))

Calculate the mean of the original numeric values of the fert variable

[1] 23.33333

Factors

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

> levels(fert)

[1] "10" "20" "50"

> mean(as.numeric(levels(fert)[fert]))

Calculate the mean of the original numeric values of the fert variable

[1] 23.33333

Factors

Factor levels of fert

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

> levels(fert)

[1] "10" "20" "50"

> mean(as.numeric(levels(fert)[fert]))

Calculate the mean of the original numeric values of the fert variable

[1] 23.33333

Factors

 When you use a factor as an index, R
silently converts it to an integer vector

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

> levels(fert)

[1] "10" "20" "50"

> mean(as.numeric(levels(fert)[fert]))

Calculate the mean of the original numeric values of the fert variable

[1] 23.33333

Factors

[1] "10" "20" "20" "50" "10" "20" "10" "50" "20"

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

> levels(fert)

[1] "10" "20" "50"

> mean(as.numeric(levels(fert)[fert]))

Calculate the mean of the original numeric values of the fert variable

[1] 23.33333

Factors

[1] 10 20 20 50 10 20 10 50 20

• A factor vector is a special storage class used for qualitative data.
• The values are internally stored as integers.
• Each integer corresponds to a level, which is a character string.

• Ordered factor: Another example
> fert <- c(10,20,20,50,10,20,10,50,20)

> fert <- factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

> levels(fert)

[1] "10" "20" "50"

> mean(as.numeric(levels(fert)[fert]))

Calculate the mean of the original numeric values of the fert variable

[1] 23.33333

Factors

[1] 10 20 20 50 10 20 10 50 20

Take the average of —

data types
• R has a wide variety of data types including —

• Scalars
• Vectors (numerical, character, logical)
• Matrices
• Data frames
• Lists

• We could use class(objectName) to find out
which type an R object is.

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A[2,3]

Element at
position (2,3)

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A["row2", "col3"]

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A["row2", "col3"]

Refer by row name and
column name

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A[2,]

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A[2,]

Get the 2nd
row

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A[,3]

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A[,3]

Get the 3rd
column

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

?
A[,c(1,3)]

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A[,c(1,3)]

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

A[,c(1,3)]

Get sub-matrix

Matrices
• A matrix is a collection of data elements arranged in a two-dimensional

rectangular layout. The data elements must be of the same basic type.
• Example

> A <- matrix(

+ c(2, 4, 3, 1, 5, 7), # The data elements

+ nrow=2, # Number of rows

+ ncol=3, # Number of columns

+ byrow = TRUE) # Fill matrix by rows

> dimnames(A) <- list(

+ c("row1", "row2"), # Row names

+ c("col1", "col2", "col3")) # Column names

> A # Print A

 col1 col2 col3

row1 2 4 3

row2 1 5 7

t(A)
Transpose of A

data types
• R has a wide variety of data types including —

• Scalars
• Vectors (numerical, character, logical)
• Matrices
• Data frames
• Lists

• We could use class(objectName) to find out
which type an R object is.

Data frames
• A data frame is used for storing data tables. It is a list of vectors of

equal length. Different columns can have different classes (numeric,
character, factor, etc.).

• Example
> d <- c(1,2,3,4)

> e <- c("red", "white", "red", NA)

> f <- c(TRUE,TRUE,TRUE,FALSE)

> mydata <- data.frame(d,e,f) # A data frame

> colnames(mydata) <- c("ID","Color","Passed") # Column names (header)

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

Data frames
• A data frame is used for storing data tables. It is a list of

vectors of equal length. Different columns can have
different classes (numeric, character, factor, etc.).

• Example
> mydata[1,2]

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

Data frames
• A data frame is used for storing data tables. It is a list of

vectors of equal length. Different columns can have
different classes (numeric, character, factor, etc.).

• Example
> mydata[1,2]

[1] red

Levels: red white

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

Data frames
• A data frame is used for storing data tables. It is a list of

vectors of equal length. Different columns can have
different classes (numeric, character, factor, etc.).

• Example
> mydata[1,2]

[1] red

Levels: red white

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE
To avoid character vectors being

converted to strings, add the option
stringsAsFactors = FALSE when

creating a data frame

Data frames
• A data frame is used for storing data tables. It is a list of

vectors of equal length. Different columns can have
different classes (numeric, character, factor, etc.).

• Example
> mydata[1,2]

[1] red

Levels: red white

> nrow(mydata) # Number of rows

[1] 4

> ncol(mydata) # Number of columns

[1] 3

> dim(mydata) # Dimensions

[1] 4 3

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

Data frames
• A data frame is used for storing data tables. It is a list of vectors of

equal length. Different columns can have different classes (numeric,
character, factor, etc.).

• Example
> str(mydata) # Get a summary of the data frame

'data.frame': 4 obs. of 3 variables:

 $ ID : num 1 2 3 4

 $ Color : Factor w/ 2 levels "red","white": 1 2 1 NA

 $ Passed: logi TRUE TRUE TRUE FALSE

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

Data frames
• A data frame is used for storing data tables. It is a list of vectors of

equal length. Different columns can have different classes (numeric,
character, factor, etc.).

• Example
> str(mydata) # Get a summary of the data frame

'data.frame': 4 obs. of 3 variables:

 $ ID : num 1 2 3 4

 $ Color : Factor w/ 2 levels "red","white": 1 2 1 NA

 $ Passed: logi TRUE TRUE TRUE FALSE

> head(mydata) # Show first several rows

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

Data frames
• A data frame is used for storing data tables. It is a list of vectors of

equal length. Different columns can have different classes (numeric,
character, factor, etc.).

• Example
> str(mydata) # Get a summary of the data frame

'data.frame': 4 obs. of 3 variables:

 $ ID : num 1 2 3 4

 $ Color : Factor w/ 2 levels "red","white": 1 2 1 NA

 $ Passed: logi TRUE TRUE TRUE FALSE

> head(mydata) # Show first several rows

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

• head() by default returns the first 6
rows (or all the rows if nrow <= 6)

• To show the first i rows, use
head(mydata, n = i)

IN TODAY’S GUIDE…
1. What is R? Why R?

2. Installation and “Hello World!” in R

3. R data types — vectors, matrices and data frames

4. R operators and managing a data frame

5. I/O and basic graphs in R

6. Pop quiz

W A R N I N G : C O M P L E T E L Y F O R B E G I N N E R S !

operators
• Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

operators
• Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

operators
• Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

x %% y x mod y (5 %% 2 is 1)

operators
• Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

x %% y x mod y (5 %% 2 is 1)

x %/% y Integer division (5 %/% 2 is 2)

Special values in

Special values in
• NA: Not available (missing); a logical constant

Special values in
• NA: Not available (missing); a logical constant

• Check via is.na(x)

Special values in
• NA: Not available (missing); a logical constant

• Check via is.na(x)
• Different from the string “NA”!

Special values in
• NA: Not available (missing); a logical constant

• Check via is.na(x)
• Different from the string “NA”!

• NaN: Not a number
> 0 / 0

[1] NaN

Special values in
• NA: Not available (missing); a logical constant

• Check via is.na(x)
• Different from the string “NA”!

• NaN: Not a number
> 0 / 0

[1] NaN

• Inf (-Inf): Infinity
> 12 / 0

[1] Inf

Special values in
• NA: Not available (missing); a logical constant

• Check via is.na(x)
• Different from the string “NA”!

• NaN: Not a number
> 0 / 0

[1] NaN

• Inf (-Inf): Infinity
> 12 / 0

[1] Inf

• NULL: The null object; undefined and of length 0

operators
• Logical operators

Operator Description
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
==

operators
• Logical operators

Operator Description
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
Exactly equal to==

operators
• Logical operators

Operator Description
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
Exactly equal to

!= Not equal to
==

operators
• Logical operators

Operator Description
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
Exactly equal to

!= Not equal to
!x Not x

==

operators
• Logical operators

Operator Description
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
Exactly equal to

!= Not equal to
!x Not x

x | y; x || y x OR y (| is vectorized)

==

operators
• Logical operators

Operator Description
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
Exactly equal to

!= Not equal to
!x Not x

x | y; x || y x OR y (| is vectorized)
x & y; x && y x AND y (& is vectorized)

==

operators
• Logical operators

Operator Description
< Less than

<= Less than or equal to
> Greater than

>= Greater than or equal to
Exactly equal to

!= Not equal to
!x Not x

x | y; x || y x OR y (| is vectorized)
x & y; x && y x AND y (& is vectorized)

isTRUE(x) Test if x is TRUE

==

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

operator rules

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

operator rules

Examples

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

operator rules

> 4 + 20 / 17 %/% 3
[1] 8 ?

Examples

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

operator rules

> 4 + 20 / 17 %/% 3
[1] 8

Examples

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

operator rules

> !FALSE | TRUE & FALSE
[1] TRUE

> 4 + 20 / 17 %/% 3
[1] 8

?

Examples

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

operator rules

> !FALSE | TRUE & FALSE
[1] TRUE

> 4 + 20 / 17 %/% 3
[1] 8

Examples

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

> (!FALSE | TRUE) & FALSE
[1] FALSE

operator rules

> !FALSE | TRUE & FALSE
[1] TRUE

> 4 + 20 / 17 %/% 3
[1] 8

?

Examples

• Operator precedence
1. ^
2. %% and %/%
3. * and /
4. + and -
5. <, >, <=, >= and !=
6. !
7. & and &&
8. | and ||
9. <-
10.=

• Associativity: Left to right, except for exponentiation and assignment
• Parentheses override order

> (!FALSE | TRUE) & FALSE
[1] FALSE

operator rules

> !FALSE | TRUE & FALSE
[1] TRUE

> 4 + 20 / 17 %/% 3
[1] 8

Examples

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

Working with data frames:

Subsetting / Sampling

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> mydata[4,] # Select 4th row

 ID Color Passed

4 4 <NA> FALSE

Working with data frames:

Subsetting / Sampling

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> mydata[4,] # Select 4th row

 ID Color Passed

4 4 <NA> FALSE

> mydata[,c(2:3)]

> # Select the 2nd and 3rd columns

 Color Passed

1 red TRUE

2 white TRUE

3 red TRUE

4 <NA> FALSE

Working with data frames:

Subsetting / Sampling

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> mydata[4,] # Select 4th row

 ID Color Passed

4 4 <NA> FALSE

> mydata$ID

> # Select the column named “ID”

[1] 1 2 3 4

> mydata[,c(2:3)]

> # Select the 2nd and 3rd columns

 Color Passed

1 red TRUE

2 white TRUE

3 red TRUE

4 <NA> FALSE

Working with data frames:

Subsetting / Sampling

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> mydata[4,] # Select 4th row

 ID Color Passed

4 4 <NA> FALSE

> mydata$ID

> # Select the column named “ID”

[1] 1 2 3 4

> mydata[,c(2:3)]

> # Select the 2nd and 3rd columns

 Color Passed

1 red TRUE

2 white TRUE

3 red TRUE

4 <NA> FALSE
> mydata[which(mydata$Passed & mydata$ID > 2),]

> # Select observation(s) by value

 ID Color Passed

3 3 red TRUE

Working with data frames:

Subsetting / Sampling

> set.seed(42) # Set random seed

> mydata[sample(1:nrow(mydata),2,replace=FALSE),]

> # Randomly sample 2 rows

 ID Color Passed

4 4 <NA> FALSE

3 3 red TRUE

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> mydata[4,] # Select 4th row

 ID Color Passed

4 4 <NA> FALSE

> mydata$ID

> # Select the column named “ID”

[1] 1 2 3 4

> mydata[,c(2:3)]

> # Select the 2nd and 3rd columns

 Color Passed

1 red TRUE

2 white TRUE

3 red TRUE

4 <NA> FALSE
> mydata[which(mydata$Passed & mydata$ID > 2),]

> # Select observation(s) by value

 ID Color Passed

3 3 red TRUE

Working with data frames:

Subsetting / Sampling

> mydata

 ID Color Passed

1 1 red TRUE

2 2 white TRUE

3 3 red TRUE

4 4 <NA> FALSE

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

Working with data frames:

Adding variables

> mydata

 ID Color Passed weight

1 1 red TRUE 65

2 2 white TRUE 70

3 3 red TRUE 75

4 4 <NA> FALSE 80

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

Working with data frames:

Adding variables

> mydata

 ID Color Passed weight

1 1 red TRUE 65

2 2 white TRUE 70

3 3 red TRUE 75

4 4 <NA> FALSE 80

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

> # Adding a new variable called height

> mydata$height <- rep(170, 4)

Working with data frames:

Adding variables

> mydata

 ID Color Passed weight height

1 1 red TRUE 65 170

2 2 white TRUE 70 170

3 3 red TRUE 75 170

4 4 <NA> FALSE 80 170

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

> # Adding a new variable called height

> mydata$height <- rep(170, 4)

Working with data frames:

Adding variables

> mydata

 ID Color Passed weight height

1 1 red TRUE 65 170

2 2 white TRUE 70 170

3 3 red TRUE 75 170

4 4 <NA> FALSE 80 170

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

> # Adding a new variable called height

> mydata$height <- rep(170, 4)

> # Adding a new variable calculated based on weight and height

> mydata$bmi <- mydata$weight / (mydata$height/100)^2

Working with data frames:

Adding variables

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

> # Adding a new variable called height

> mydata$height <- rep(170, 4)

> # Adding a new variable calculated based on weight and height

> mydata$bmi <- mydata$weight / (mydata$height/100)^2

> mydata

 ID Color Passed weight height bmi

1 1 red TRUE 65 170 22.49135

2 2 white TRUE 70 170 24.22145

3 3 red TRUE 75 170 25.95156

4 4 <NA> FALSE 80 170 27.68166

Working with data frames:

Adding variables

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

> # Adding a new variable called height

> mydata$height <- rep(170, 4)

> # Adding a new variable calculated based on weight and height

> mydata$bmi <- mydata$weight / (mydata$height/100)^2

> # Adding a new logical variable based on bmi

> mydata$overwt <- mydata$bmi >= 25

> mydata

 ID Color Passed weight height bmi

1 1 red TRUE 65 170 22.49135

2 2 white TRUE 70 170 24.22145

3 3 red TRUE 75 170 25.95156

4 4 <NA> FALSE 80 170 27.68166

Working with data frames:

Adding variables

> # Adding a new variable called weight

> mydata$weight <- seq(from = 65, to = 80, by = 5)

> # Adding a new variable called height

> mydata$height <- rep(170, 4)

> # Adding a new variable calculated based on weight and height

> mydata$bmi <- mydata$weight / (mydata$height/100)^2

> # Adding a new logical variable based on bmi

> mydata$overwt <- mydata$bmi >= 25

> mydata

 ID Color Passed weight height bmi overwt

1 1 red TRUE 65 170 22.49135 FALSE

2 2 white TRUE 70 170 24.22145 FALSE

3 3 red TRUE 75 170 25.95156 TRUE

4 4 <NA> FALSE 80 170 27.68166 TRUE

Working with data frames:

Adding variables

> mydata

 ID Color Passed weight height bmi overwt

1 1 red TRUE 65 170 22.49135 FALSE

2 2 white TRUE 70 170 24.22145 FALSE

3 3 red TRUE 75 170 25.95156 TRUE

4 4 <NA> FALSE 80 170 27.68166 TRUE

Working with data frames:

Dropping variables

> # Exclude variables ID, Color

> myvars <- colnames(mydata) %in% c("ID", "Color")

> newdata <- mydata[!myvars]

> newdata

 Passed weight height bmi overwt

1 TRUE 65 170 22.49135 FALSE

2 TRUE 70 170 24.22145 FALSE

3 TRUE 75 170 25.95156 TRUE

4 FALSE 80 170 27.68166 TRUE

> mydata

 ID Color Passed weight height bmi overwt

1 1 red TRUE 65 170 22.49135 FALSE

2 2 white TRUE 70 170 24.22145 FALSE

3 3 red TRUE 75 170 25.95156 TRUE

4 4 <NA> FALSE 80 170 27.68166 TRUE

Working with data frames:

Dropping variables

> # Exclude variables ID, Color

> myvars <- colnames(mydata) %in% c("ID", "Color")

> newdata <- mydata[!myvars]

> newdata

 Passed weight height bmi overwt

1 TRUE 65 170 22.49135 FALSE

2 TRUE 70 170 24.22145 FALSE

3 TRUE 75 170 25.95156 TRUE

4 FALSE 80 170 27.68166 TRUE

> # Exclude 1st and 3rd variables

> newdata2 <- mydata[c(-1,-3)]

> newdata2

 Color weight height bmi overwt

1 red 65 170 22.49135 FALSE

2 white 70 170 24.22145 FALSE

3 red 75 170 25.95156 TRUE

4 <NA> 80 170 27.68166 TRUE

> mydata

 ID Color Passed weight height bmi overwt

1 1 red TRUE 65 170 22.49135 FALSE

2 2 white TRUE 70 170 24.22145 FALSE

3 3 red TRUE 75 170 25.95156 TRUE

4 4 <NA> FALSE 80 170 27.68166 TRUE

Working with data frames:

Dropping variables

> # Exclude variables ID, Color

> myvars <- colnames(mydata) %in% c("ID", "Color")

> newdata <- mydata[!myvars]

> newdata

 Passed weight height bmi overwt

1 TRUE 65 170 22.49135 FALSE

2 TRUE 70 170 24.22145 FALSE

3 TRUE 75 170 25.95156 TRUE

4 FALSE 80 170 27.68166 TRUE

> # Delete variable Color

> mydata$Color <- NULL

> # Exclude 1st and 3rd variables

> newdata2 <- mydata[c(-1,-3)]

> newdata2

 Color weight height bmi overwt

1 red 65 170 22.49135 FALSE

2 white 70 170 24.22145 FALSE

3 red 75 170 25.95156 TRUE

4 <NA> 80 170 27.68166 TRUE

> mydata

 ID Color Passed weight height bmi overwt

1 1 red TRUE 65 170 22.49135 FALSE

2 2 white TRUE 70 170 24.22145 FALSE

3 3 red TRUE 75 170 25.95156 TRUE

4 4 <NA> FALSE 80 170 27.68166 TRUE

Working with data frames:

Dropping variables

> # Exclude variables ID, Color

> myvars <- colnames(mydata) %in% c("ID", "Color")

> newdata <- mydata[!myvars]

> newdata

 Passed weight height bmi overwt

1 TRUE 65 170 22.49135 FALSE

2 TRUE 70 170 24.22145 FALSE

3 TRUE 75 170 25.95156 TRUE

4 FALSE 80 170 27.68166 TRUE

> # Delete variable Color

> mydata$Color <- NULL

> mydata

 ID Passed weight height bmi overwt

1 1 TRUE 65 170 22.49135 FALSE

2 2 TRUE 70 170 24.22145 FALSE

3 3 TRUE 75 170 25.95156 TRUE

4 4 FALSE 80 170 27.68166 TRUE

Working with data frames:

Dropping variables

> # Exclude 1st and 3rd variables

> newdata2 <- mydata[c(-1,-3)]

> newdata2

 Color weight height bmi overwt

1 red 65 170 22.49135 FALSE

2 white 70 170 24.22145 FALSE

3 red 75 170 25.95156 TRUE

4 <NA> 80 170 27.68166 TRUE

WARNING
This would directly delete

from the data frame mydata!

> mydata

 ID Passed weight height bmi overwt

1 1 TRUE 65 170 22.49135 FALSE

2 2 TRUE 70 170 24.22145 FALSE

3 3 TRUE 75 170 25.95156 TRUE

4 4 FALSE 80 170 27.68166 TRUE

Working with data frames:

Sorting by variables

• To sort a data frame in R, use the order() function.
• By default, sorting is ascending.
• Prepend the sorting variable by a minus sign to indicate

descending order.

> mydata

 ID Passed weight height bmi overwt

1 1 TRUE 65 170 22.49135 FALSE

2 2 TRUE 70 170 24.22145 FALSE

3 3 TRUE 75 170 25.95156 TRUE

4 4 FALSE 80 170 27.68166 TRUE

Working with data frames:

Sorting by variables

> # Sort by descending weight and ascending height

> sortedData <- mydata[order(-mydata$weight, mydata$height),]

> mydata

 ID Passed weight height bmi overwt

1 1 TRUE 65 170 22.49135 FALSE

2 2 TRUE 70 170 24.22145 FALSE

3 3 TRUE 75 170 25.95156 TRUE

4 4 FALSE 80 170 27.68166 TRUE

Working with data frames:

Sorting by variables

> # Sort by descending weight and ascending height

> sortedData <- mydata[order(-mydata$weight, mydata$height),]

> sortedData

 ID Passed weight height bmi overwt

4 4 FALSE 80 170 27.68166 TRUE

3 3 TRUE 75 170 25.95156 TRUE

2 2 TRUE 70 170 24.22145 FALSE

1 1 TRUE 65 170 22.49135 FALSE

IN TODAY’S GUIDE…
1. What is R? Why R?

2. Installation and “Hello World!” in R

3. R data types — vectors, matrices and data frames

4. R operators and managing a data frame

5. I/O and basic graphs in R

6. Pop quiz

W A R N I N G : C O M P L E T E L Y F O R B E G I N N E R S !

Exporting data from
• write.table(): print data frame to text file

First row contains variable names; do not print row names

Delimiter is tab (“\t”)

Do not double quote character / factor variables

write.table(mydata, file = “datFile.txt”, sep = “\t”, quote =
FALSE, row.names = FALSE, col.names = TRUE)

Exporting data from
• write.table(): print data frame to text file

First row contains variable names; do not print row names

Delimiter is tab (“\t”)

Do not double quote character / factor variables

write.table(mydata, file = “datFile.txt”, sep = “\t”, quote =
FALSE, row.names = FALSE, col.names = TRUE)

• save(): Write R objects to an external file
save(file = “savedData.RData”, list = ls())

Exporting data from
• write.table(): print data frame to text file

First row contains variable names; do not print row names

Delimiter is tab (“\t”)

Do not double quote character / factor variables

write.table(mydata, file = “datFile.txt”, sep = “\t”, quote =
FALSE, row.names = FALSE, col.names = TRUE)

• save(): Write R objects to an external file
save(file = “savedData.RData”, list = ls())

• Other functions for exporting data

Exporting data from
• write.table(): print data frame to text file

First row contains variable names; do not print row names

Delimiter is tab (“\t”)

Do not double quote character / factor variables

write.table(mydata, file = “datFile.txt”, sep = “\t”, quote =
FALSE, row.names = FALSE, col.names = TRUE)

• save(): Write R objects to an external file
save(file = “savedData.RData”, list = ls())

• Other functions for exporting data
• write.csv()

Exporting data from
• write.table(): print data frame to text file

First row contains variable names; do not print row names

Delimiter is tab (“\t”)

Do not double quote character / factor variables

write.table(mydata, file = “datFile.txt”, sep = “\t”, quote =
FALSE, row.names = FALSE, col.names = TRUE)

• save(): Write R objects to an external file
save(file = “savedData.RData”, list = ls())

• Other functions for exporting data
• write.csv()

• write.xlsx() in the xlsx package

Exporting data from
• write.table(): print data frame to text file

First row contains variable names; do not print row names

Delimiter is tab (“\t”)

Do not double quote character / factor variables

write.table(mydata, file = “datFile.txt”, sep = “\t”, quote =
FALSE, row.names = FALSE, col.names = TRUE)

• save(): Write R objects to an external file
save(file = “savedData.RData”, list = ls())

• Other functions for exporting data
• write.csv()

• write.xlsx() in the xlsx package
• ?<function_name> and read their manual

Importing data into
• read.table(): read a text file in table format and create a data frame

from it
First row contains variable names

Delimiter is tab (“\t”)

read.table(file = “datFile.txt”, sep = “\t”, header = TRUE)

• load(): Reload datasets written with the function “save”
load(“savedData.RData”)

• Other functions for importing data
• read.csv()

• read.xlsx() in the xlsx package
• ?<function_name> and read their manual

Practical: Simple visualisation in
• There are actually a lot of built-in data sets in R.

• Type library(help = “datasets") to see what are they…

Practical: Simple visualisation in
• There are actually a lot of built-in data sets in R.

• Type library(help = “datasets") to see what are they…

Practical: Simple visualisation in
• There are actually a lot of built-in data sets in R.

• Type library(help = “datasets") to see what are they…

• Since by Chinese zodiac this year is year of the rooster,
we would try to deal with the ChickWeight data set.

Practical: Like Regular Chickens
• The data set is already available for use when we start R.
• First few lines of str(ChickWeight) —

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and
'data.frame': 578 obs. of 4 variables:

 $ weight: num 42 51 59 64 76 93 106 125 149 171 ...

 $ Time : num 0 2 4 6 8 10 12 14 16 18 ...

 $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15
15 15 15 15 15 ...

 $ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...

Origin of
code name

Practical: Like Regular Chickens
• The data set is already available for use when we start R.
• First few lines of str(ChickWeight) —

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and
'data.frame': 578 obs. of 4 variables:

 $ weight: num 42 51 59 64 76 93 106 125 149 171 ...

 $ Time : num 0 2 4 6 8 10 12 14 16 18 ...

 $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15
15 15 15 15 15 ...

 $ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 …

• Questions we could ask —

Practical: Like Regular Chickens
• The data set is already available for use when we start R.
• First few lines of str(ChickWeight) —

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and
'data.frame': 578 obs. of 4 variables:

 $ weight: num 42 51 59 64 76 93 106 125 149 171 ...

 $ Time : num 0 2 4 6 8 10 12 14 16 18 ...

 $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15
15 15 15 15 15 ...

 $ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 …

• Questions we could ask —
• How are the chicken weights at time 0 distributed?

Practical: Like Regular Chickens
• The data set is already available for use when we start R.
• First few lines of str(ChickWeight) —

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and
'data.frame': 578 obs. of 4 variables:

 $ weight: num 42 51 59 64 76 93 106 125 149 171 ...

 $ Time : num 0 2 4 6 8 10 12 14 16 18 ...

 $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15
15 15 15 15 15 ...

 $ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 …

• Questions we could ask —
• How are the chicken weights at time 0 distributed?
• How do the chicken weights generally change over time?

Practical: Like Regular Chickens
• The data set is already available for use when we start R.
• First few lines of str(ChickWeight) —

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and
'data.frame': 578 obs. of 4 variables:

 $ weight: num 42 51 59 64 76 93 106 125 149 171 ...

 $ Time : num 0 2 4 6 8 10 12 14 16 18 ...

 $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15
15 15 15 15 15 ...

 $ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 …

• Questions we could ask —
• How are the chicken weights at time 0 distributed?
• How do the chicken weights generally change over time?
• Is there a difference in the average chicken weights when they have different

diets?

Practical: Like Regular Chickens
• The data set is already available for use when we start R.
• First few lines of str(ChickWeight) —

Classes ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and
'data.frame': 578 obs. of 4 variables:

 $ weight: num 42 51 59 64 76 93 106 125 149 171 ...

 $ Time : num 0 2 4 6 8 10 12 14 16 18 ...

 $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15
15 15 15 15 15 ...

 $ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 …

• Questions we could ask —
• How are the chicken weights at time 0 distributed?
• How do the chicken weights generally change over time?
• Is there a difference in the average chicken weights when they have different

diets?

‣ Explore by data v isual isat ion!

Practical: Like Regular Chickens
• Questions we could ask —

• How are the chicken weights at time 0 distributed?

Practical: Like Regular Chickens
• Questions we could ask —

• How are the chicken weights at time 0 distributed?

• Draw a histogram!

Practical: Like Regular Chickens
• Questions we could ask —

• How are the chicken weights at time 0 distributed?

• Draw a histogram!
hist(ChickWeight$weight[
ChickWeight$Time == 0],
main = "Distribution of
Chicken Weight at Time
0", xlab = "Weight")

• Questions we could ask —
• How do the chicken weights generally change over time?

Practical: Like Regular Chickens

• Questions we could ask —
• How do the chicken weights generally change over time?

• Draw a scatterplot!

Practical: Like Regular Chickens

• Questions we could ask —
• How do the chicken weights generally change over time?

• Draw a scatterplot!

Practical: Like Regular Chickens

plot(ChickWeight$Time,
ChickWeight$weight, main
= "Change of Chicken
Weight Over Time", xlab =
"Time", ylab = "Weight")

Practical: Like Regular Chickens
• Questions we could ask —

• Is there a difference in the average chicken weights when they
have different diets?

Practical: Like Regular Chickens
• Questions we could ask —

• Is there a difference in the average chicken weights when they
have different diets?

• This time we use ggplot2 instead.

Practical: Like Regular Chickens
• Questions we could ask —

• Is there a difference in the average chicken weights when they
have different diets?

• This time we use ggplot2 instead.
> library("ggplot2")
> qplot(Time, weight,
data = ChickWeight,
colour = Diet)

Practical: Like Regular Chickens
• Questions we could ask —

• Is there a difference in the average chicken weights when they
have different diets?

• This time we use ggplot2 instead.
> library("ggplot2")
> qplot(Time, weight,
data = ChickWeight,
colour = Diet)

• It is hard to distinguish between the four
diet groups.

• Questions we could ask —
• Is there a difference in the average chicken weights when they

have different diets?
• This time we use ggplot2 instead.

> library("ggplot2")
> qplot(Time, weight,
data = ChickWeight,
colour = Diet, geom =
c("point", "smooth"))

Practical: Like Regular Chickens

• Questions we could ask —
• Is there a difference in the average chicken weights when they

have different diets?
• This time we use ggplot2 instead.

> library("ggplot2")
> qplot(Time, weight,
data = ChickWeight,
colour = Diet, geom =
c("point", "smooth"))

Practical: Like Regular Chickens

• It seems that on average, diets 3 and 4
result in heavier chicken weight. The
difference grows greater over time.

• Questions we could ask —
• Is there a difference in the average chicken weights when they

have different diets?
• This time we use ggplot2 instead.

> library("ggplot2")
> qplot(Time, weight,
data = ChickWeight,
colour = Diet, geom =
c("point", "smooth"))

Practical: Like Regular Chickens

• It seems that on average, diets 3 and 4
result in heavier chicken weight. The
difference grows greater over time.

• Statistical analysis is needed to determine
whether this is truly significant.

• Questions we could ask —
• Is there a difference in the average chicken weights when they

have different diets?
• You could also save your graph to your local directory.

> library(“ggplot2”)
> pdf(“LRCvis.pdf”)
> qplot(Time, weight, data
= ChickWeight, colour =
Diet, geom = c("point",
“smooth"))
> dev.off()

Practical: Like Regular Chickens

• Your plot would then be saved
as ./LRCvis.pdf.

IN TODAY’S GUIDE…
1. What is R? Why R?

2. Installation and “Hello World!” in R

3. R data types — vectors, matrices and data frames

4. R operators and managing a data frame

5. I/O and basic graphs in R

6. Pop quiz

W A R N I N G : C O M P L E T E L Y F O R B E G I N N E R S !

References
• Many ideas were generated when visiting the following

websites / materials.
• Also some of the used code snippets were modified

based on the demo codes there.
• The R manual.
• UC Berkeley STAT133 lecture notes.
• http://stackoverflow.com/
• http://www.statmethods.net/
• http://arrgh.tim-smith.us/
• http://www.r-tutor.com/r-introduction/matrix

http://stackoverflow.com/
http://www.statmethods.net/
http://arrgh.tim-smith.us/
http://www.r-tutor.com/r-introduction/matrix

Image sources
• R logo. https://www.r-project.org/logo/Rlogo.png
• Hitchhiker’s thumb. http://i1.kym-cdn.com/entries/icons/facebook/000/018/991/HitchHikersGuideBlackSS.jpg
• Don’t panic. http://geekifyinc.com/wp-content/uploads/2014/04/IMG_0333-1280.jpg
• Ross Ihaka. http://www.stats.org.nz/Newsletter69/images/Ross_Pickering_Medal.jpg
• Robert Gentleman. https://www.fredhutch.org/en/news/center-news/2009/05/Gentlemen-presents-lecture/_jcr_content/

articletext/textimage/image.img.jpg/1322528033362.jpg
• Richard Stallman (left). https://upload.wikimedia.org/wikipedia/commons/f/f3/Richard_Stallman_by_Anders_Brenna_01.jpg
• Richard Stallman (right). http://i1-news.softpedia-static.com/images/news2/Richard-Stallman-Says-He-Created-GNU-

Which-Is-Called-Often-Linux-482416-2.jpg
• GNU logo. https://www.gnu.org/graphics/empowered-by-gnu.svg
• Copyleft. https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Copyleft.svg/1024px-Copyleft.svg.png
• Statistics clipart. http://images.clipartpanda.com/statistics-clipart-statistics.png
• All ggplot2 sample graphs from: http://www.r-graph-gallery.com/portfolio/ggplot2-package/
• Google trends graph of statistical software. Screenshot of https://goo.gl/jyOViq
• RStudio screenshot. http://1.bp.blogspot.com/-BCAWGBV9ze4/USjitphaQoI/AAAAAAAAMzI/-hlfvxFfbVg/s1600/

Screenshot+from+2013-02-23+09%3A38%3A38.png
• Running rooster. https://notadinnerblog.files.wordpress.com/2016/09/cropped-avian_influenza_running_chicken.jpg
• “Sure, just cut them up like regular chickens”. Screenshot from Eraserhead by David Lynch. http://www.funnyjunk.com/

Just+cut+them+up+like+regular+chickens/hdgifs/5674895#1486a9_5674451
• Marvin. http://pre04.deviantart.net/cd13/th/pre/f/2014/342/c/8/marvin_the_paranoid_android_by_wheelmaker42-

d896526.png

https://www.r-project.org/logo/Rlogo.png
http://i1.kym-cdn.com/entries/icons/facebook/000/018/991/HitchHikersGuideBlackSS.jpg
http://geekifyinc.com/wp-content/uploads/2014/04/IMG_0333-1280.jpg
http://www.stats.org.nz/Newsletter69/images/Ross_Pickering_Medal.jpg
https://www.fredhutch.org/en/news/center-news/2009/05/Gentlemen-presents-lecture/_jcr_content/articletext/textimage/image.img.jpg/1322528033362.jpg
https://www.fredhutch.org/en/news/center-news/2009/05/Gentlemen-presents-lecture/_jcr_content/articletext/textimage/image.img.jpg/1322528033362.jpg
https://www.fredhutch.org/en/news/center-news/2009/05/Gentlemen-presents-lecture/_jcr_content/articletext/textimage/image.img.jpg/1322528033362.jpg
https://upload.wikimedia.org/wikipedia/commons/f/f3/Richard_Stallman_by_Anders_Brenna_01.jpg
http://i1-news.softpedia-static.com/images/news2/Richard-Stallman-Says-He-Created-GNU-Which-Is-Called-Often-Linux-482416-2.jpg
http://i1-news.softpedia-static.com/images/news2/Richard-Stallman-Says-He-Created-GNU-Which-Is-Called-Often-Linux-482416-2.jpg
http://i1-news.softpedia-static.com/images/news2/Richard-Stallman-Says-He-Created-GNU-Which-Is-Called-Often-Linux-482416-2.jpg
https://www.gnu.org/graphics/empowered-by-gnu.svg
https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Copyleft.svg/1024px-Copyleft.svg.png
http://images.clipartpanda.com/statistics-clipart-statistics.png
http://www.r-graph-gallery.com/portfolio/ggplot2-package/
https://goo.gl/jyOViq
http://1.bp.blogspot.com/-BCAWGBV9ze4/USjitphaQoI/AAAAAAAAMzI/-hlfvxFfbVg/s1600/Screenshot+from+2013-02-23+09%3A38%3A38.png
http://1.bp.blogspot.com/-BCAWGBV9ze4/USjitphaQoI/AAAAAAAAMzI/-hlfvxFfbVg/s1600/Screenshot+from+2013-02-23+09%3A38%3A38.png
http://1.bp.blogspot.com/-BCAWGBV9ze4/USjitphaQoI/AAAAAAAAMzI/-hlfvxFfbVg/s1600/Screenshot+from+2013-02-23+09%3A38%3A38.png
https://notadinnerblog.files.wordpress.com/2016/09/cropped-avian_influenza_running_chicken.jpg
http://www.funnyjunk.com/Just+cut+them+up+like+regular+chickens/hdgifs/5674895#1486a9_5674451
http://www.funnyjunk.com/Just+cut+them+up+like+regular+chickens/hdgifs/5674895#1486a9_5674451
http://pre04.deviantart.net/cd13/th/pre/f/2014/342/c/8/marvin_the_paranoid_android_by_wheelmaker42-d896526.png
http://pre04.deviantart.net/cd13/th/pre/f/2014/342/c/8/marvin_the_paranoid_android_by_wheelmaker42-d896526.png
http://pre04.deviantart.net/cd13/th/pre/f/2014/342/c/8/marvin_the_paranoid_android_by_wheelmaker42-d896526.png

THANK YOU.
ANY QUESTIONS?

Y I M I N G L I , 1 5 M A R 2 0 1 7

